• Title/Summary/Keyword: Gabor system

Search Result 75, Processing Time 0.024 seconds

Driving School Attendance Management System based on Multi-modal Biometrics (다중 바이오인식 기반 운전면허학원 근태관리 시스템)

  • Kim, Yong-Joong;Park, Sung-Ho;Choi, Woo-Joon;Seo, Dae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.506-509
    • /
    • 2010
  • 본 논문에서는 지문과 얼굴정보를 이용한 다중 바이오인식 기술(Multi-modal Biometric Technology)을 이용한 운전면허학원 근태관리 시스템 구현에 대해 논한다. 지문인식은 Neurotechnology사의 Free Fingerprint Verification SDK를 사용하였으며, 얼굴인식은 얼굴검출 단계에 Adaboost, 특징추출 단계에 Gabor Wavelet Transform을 이용하였다. 마지막 단계인 인식단계는 두 특징벡터 간의 유클리디언 거리를 이용한다. 두 바이오정보를 통한 인증(Verification)의 결정여부는 AND규칙을 이용하여 두 가지의 바이오정보 인증과정을 모두 통과하여야만 최종 인증확인이 되도록 구현하였다. 성능테스트는 10명의 적은 테스트 집합을 이용하였으며 지문과 얼굴정보를 각각 이용하였을 때보다 두 정보를 결합하였을 때 더 나은 인식률을 보였다.

Local Context based Feature Extraction for Efficient Face Detection (효율적인 얼굴 검출을 위한 지역적 켄텍스트 기반의 특징 추출)

  • Rhee, Phill-Kyu;Xu, Yong Zhe;Shin, Hak-Chul;Shen, Yan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2011
  • Recently, the surveillance system is highly being attention. Various Technologies as detecting object from image than determining and recognizing if the object are person are universally being used. Therefore, In this paper shows detecting on this kind of object and local context based facial feather detection algorithm is being advocated. Detect using Gabor Bunch in the same time Bayesian detection method for revision to find feather point is being described. The entire system to search for object area from image, context-based face detection, feature extraction methods applied to improve the performance of the system.

Fast Fingerprint Alignment Method and Weighted Feature Vector Extraction Method in Filterbank-Based Fingerprint Matching (필터뱅크 기반 지문정합에서 빠른 지문 정렬 방법 및 가중치를 부여한 특징 벡터 추출 방법)

  • 정석재;김동윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 2004
  • Minutiae-based fingerprint identification systems use minutiae points, which cannot completely characterize local ridge structures. Further, this method requires many methods for matching two fingerprint images containing different number of minutiae points. Therefore, to represent the fired length information for one fingerprint image, the filterbank-based method was proposed as an alternative to minutiae-based fingerprint representation. However, it has two shortcomings. One shortcoming is that similar feature vectors are extracted from the different fingerprints which have the same fingerprint type. Another shortcoming is that this method has overload to reduce the rotation error in the fingerprint image acquisition. In this paper, we propose the minutia-weighted feature vector extraction method that gives more weight in extracting feature value, if the region has minutiae points. Also, we Propose new fingerprint alignment method that uses the average local orientations around the reference point. These methods improve the fingerprint system's Performance and speed, respectively. Experimental results indicate that the proposed methods can reduce the FRR of the filterbank-based fingerprint matcher by approximately 0.524% at a FAR of 0.967%, and improve the matching performance by 5% in ERR. The system speed is over 1.28 times faster.

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

Fake Face Detection and Falsification Detection System Based on Face Recognition (얼굴 인식 기반 위변장 감지 시스템)

  • Kim, Jun Young;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 2015
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous liveness detection and fake face detection methods are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new liveness detection method using pupil reflection, and new fake image detection using Adaboost detector. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, The template matching plays a role in determining the allowed eye area. And then, the reflected image in the pupil is used to decide whether or not the captured image is live or not. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of fake images.

A Fast Iris Feature Extraction Method For Embedded System (Embedded 시스템을 위한 고속의 홍채특징 추출 방법)

  • Choi, Chang-Soo;Min, Man-Gi;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.128-134
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. Recently, using iris information is used in many fields such as access control and information security. But Perform complex operations to extract features of the iris. because High-end hardware for real-time iris recognition is required. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. Experimental results show that the performance of proposed method is comparable to existing methods using Gabor transform noticeably improves recognition performance and it is noted that the processing time of the local gradient histogram transform is much faster than that of the existing method and rotation was also a strong attribute.

Visual Saliency Detection Based on color Frequency Features under Bayesian framework

  • Ayoub, Naeem;Gao, Zhenguo;Chen, Danjie;Tobji, Rachida;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.676-692
    • /
    • 2018
  • Saliency detection in neurobiology is a vehement research during the last few years, several cognitive and interactive systems are designed to simulate saliency model (an attentional mechanism, which focuses on the worthiest part in the image). In this paper, a bottom up saliency detection model is proposed by taking into account the color and luminance frequency features of RGB, CIE $L^*a^*b^*$ color space of the image. We employ low-level features of image and apply band pass filter to estimate and highlight salient region. We compute the likelihood probability by applying Bayesian framework at pixels. Experiments on two publically available datasets (MSRA and SED2) show that our saliency model performs better as compared to the ten state of the art algorithms by achieving higher precision, better recall and F-Measure.

Mathematical Modeling Analysis of the Human Visual Filters (인간시각필터의 수학적 모델링 해석)

  • Lee, Jeok-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.617-629
    • /
    • 2001
  • The mathematical models for the receptive field of simple cells in the human visual system have been developed in the areas of psychophysics, physiology and neuroscience. The various models used in the fields of digital image processing and computer vision include Gator complex, Gaussian derivatives and Hermite functions. In this paper, the effective widths for the models are derived based on the space-frequency uncertainty principle. The center frequency and parameters related to the models are determined in accordance with the human visual filters, and resultant bandwidths are analyzed. Furthermore, the characteristics of space and frequency for the models is analyzed and compared to the experimental data obtained from psychophysics.

  • PDF

A Study on Face Recognition Method based on Binary Pattern Image under Varying Lighting Condition (조명 변화 환경에서 이진패턴 영상을 이용한 얼굴인식 방법에 관한 연구)

  • Kim, Dong-Ju;Sohn, Myoung-Kyu;Lee, Sang-Heon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2012
  • In this paper, we propose a illumination-robust face recognition system using MCS-LBP and 2D-PCA algorithm. A binary pattern transform which has been used in the field of the face recognition and facial expression, has a characteristic of robust to illumination. Thus, this paper propose MCS-LBP which is more robust to illumination than previous LBP, and face recognition system fusing 2D-PCA algorithm. The performance evaluation of proposed system was performed by using various binary pattern images and well-known face recognition features such as PCA, LDA, 2D-PCA and ULBP histogram of gabor images. In the process of performance evaluation, we used a YaleB face database, an extended YaleB face database, and a CMU-PIE face database that are constructed under varying lighting condition, and the proposed system which consists of MCS-LBP image and 2D-PCA feature show the best recognition accuracy.

Fingerprint-Based Personal Authentication Using Directional Filter Bank (방향성 필터 뱅크를 이용한 지문 기반 개인 인증)

  • 박철현;오상근;김범수;원종운;송영철;이재준;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.256-265
    • /
    • 2003
  • To improve reliability and practicality, a fingerprint-based biometric system needs to be robust to rotations of an input fingerprint and the processing speed should be fast. Accordingly, this paper presents a new filterbank-based fingerprint feature extraction and matching method that is robust to diverse rotations and reasonably fast. The proposed method fast extracts fingerprint features using a directional filter bank, which effectively decomposes an image into several subband outputs Since matching is also performed rapidly based on the Euclidean distance between the corresponding feature vectors, the overall processing speed is so fast. To make the system robust to rotations, the proposed method generates a set of feature vectors considering various rotations of an input fingerprint and then matches these feature vectors with the enrolled single template feature vector. Experimental results demonstrated the high speed of the proposed method in feature extraction and matching, along with a comparable verification accuracy to that of other leading techniques.