Mathematical Modeling Analysis of the Human Visual Filters

인간시각필터의 수학적 모델링 해석

  • 이적식 (경기대학교 전자기계공학부)
  • Published : 2001.11.01

Abstract

The mathematical models for the receptive field of simple cells in the human visual system have been developed in the areas of psychophysics, physiology and neuroscience. The various models used in the fields of digital image processing and computer vision include Gator complex, Gaussian derivatives and Hermite functions. In this paper, the effective widths for the models are derived based on the space-frequency uncertainty principle. The center frequency and parameters related to the models are determined in accordance with the human visual filters, and resultant bandwidths are analyzed. Furthermore, the characteristics of space and frequency for the models is analyzed and compared to the experimental data obtained from psychophysics.

인간시각체계에서 단순세포의 수용영역에 대한 수학적인 모델 연구가 정신물리학, 생리학, 신경과학 측면에서 발전되어 왔다. 여러 분야에서 사용되는 모델은 Gabor 복소함수, Gaussian 미분, Hermite 함수를 포함하며, 영상처리와 컴퓨터 시각 분야에 많이 응용되고 있다. 본 논문에서는 불확실성원리에 기초하여 고려된 함수들의 결합유효폭을 계산하고, 인간시각필터와 일치되는 중심주파수와 각 함수의 변수들을 결정하고, 결과적인 대역폭을 분석한다. 더욱이 함수들의 위치와 주파수 영역의 특성을 파악하여 정신물리학적으로 획득한 실험적인 데이터와의 관련성을 검토한다.

Keywords

References

  1. T. D. Sanger, 'Stereo disparity computation using Gabor filters,' Biological Cybernetics, Vol. 59, pp. 405-418, 1988 https://doi.org/10.1007/BF00336114
  2. D. G. Stork and H. R. Wilson, 'Do Gabor functions provide appropriate descriptions of visual cortical receptive fields?' Journal of Optical Society cf America, Vol. 7, No.8, pp. 1362-1373, Aug. 1900
  3. N. Qian and Y. Zhu, 'Physiological computation of binocular disparity,' Vision Research, 37, No. 13, pp. 1811-1827, 1997 https://doi.org/10.1016/S0042-6989(96)00331-8
  4. J. Jones and L. Palmer, 'An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,' Journal of Neurophysiology, Vol. 58, No.6, pp. 1233-1258, Dec. 1987
  5. S. J. Prince and R. A. Eagle, 'Stereo correspondence in one-dimensional Gabor stimuli,' Vision Research, 40, pp. 913-924, 2000 https://doi.org/10.1016/S0042-6989(99)00242-4
  6. R. A. Young, 'Simulation of human retinal function with the Gaussian derivative model,' Int'l Conf. on Computer Vision and Pattern Recognition, pp. 564-569, 1986
  7. A. P. Morgan, L. T. Watson and R. A. Young, 'A Gaussian derivative based version of JPEG for image compression and decompression,' IEEE Trans. on Image Processing, Vol. 7, No. 9, pp. 1311-1320, Sept. 1998 https://doi.org/10.1109/83.709663
  8. D. Marr and E. Hildreth, 'Theory of edge detection,' Proc. of the Royal Society cf London, Series B, Vol. 207, pp. 187-217, 1980
  9. David Regan, Vision and Visual Dysfunction Volume 10, Spatial Vision, CRC Press, pp. 66-67, 1991
  10. C. Yu and D. M. Levi, 'Spatial-frequency and orientation tuning in psychophysical end stopping,' Visual Neuroscience, Vol. 15, No. 14, pp. 585-595, 1998 https://doi.org/10.1017/S0952523898154019
  11. S. A. Klein and B. Beutter, 'Minimizing and maximizing the joint space-spatial frequency uncertainty of Gabor-like functions,' Journal of Optical Society cf America A, Vol. 9, pp. 337-340, 1992
  12. J. A. Bloom and T. R. Reed, 'An uncertainty analysis of some real functions for image processing applications,' Int'l Conf. on Image Processing, pp. 670-673, 1997 https://doi.org/10.1109/ICIP.1997.632210
  13. J. A. Bloom and T. R. Reed, 'On the compression of still images using the derivative of Gaussian transform,' Int'l Conf. on Image Processing, Vol. 3, pp. 433-437, 1998 https://doi.org/10.1109/ICIP.1998.727231
  14. H. R. Wilson, D. K. McFarlane and G. C. Phillips, 'Spatial frequency tuning of orientation selective units estimated by oblique masking,' Vision Research, 23, pp. 873-882, 1983 https://doi.org/10.1016/0042-6989(83)90055-X
  15. I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis, Oxford Psychology Series No. 29, Oxford Press, 1995
  16. F. W. Campell and J. G. Robson, 'Application of Fourier analysis to the visibility of gratings,' Journal of Physiology, 197, 551-566, 1968
  17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 1965
  18. M. W. Matlin and H. J. Foley, Sensation and Perception, Allyn and Bacon, 1992
  19. J. J. Kulikowski, S. Marcelja and P. O. Bishop, 'Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex,' Biological Cybernetics, Vol. 43, pp.l87-198, 1982 https://doi.org/10.1007/BF00319978
  20. N. B. Nill, 'A visual model weighted cosine transform for image compression and quality assessment,' IEEE Trans. on Communications, COM-33, No.6, pp. 551-557, June 1985
  21. J. L. Mannos and D. J. Sakrison, 'The effects of a visual fidelity criterion on the encoding of images,' IEEE Trans. on Information Theory, Vol. IT-20, No.4, pp.525-536, July 1974