• Title/Summary/Keyword: GaAs MMIC

Search Result 191, Processing Time 0.024 seconds

Design of MMIC 2 Stage Power amplifiers for 35 ㎓ (35 ㎓ MMIC 2단 전력 증폭기 설계)

  • 이일형;채연식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.637-640
    • /
    • 1998
  • A 35 ㎓ GaAs MMIC power amplifier was designed using a monolithic technology with AlGaAs/InGaAs/GaAs power PM-HEMTs, rectangualr spiral inductors and Si3N4 MIM capacitors. The GaAs power MESFETs in the input and output stages have total gate widths of 120 um and 320 um, respectively. Total S21 gain of 10.82dB and S11 of -16.26 dB were obtained from the designed MMIC power amplifier at 35 ㎓. And the chip size of the MMIC amplifier was 1.4$\times$0.8 $\textrm{mm}^2$

  • PDF

Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits (차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향)

  • Lee, S.H.;Lim, J.W.;Kang, D.M.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

GaN, GaAs MMIC Developments and Trends (GaN, GaAs MMIC 개발 및 전망)

  • Ji, H.G.;Chang, D.P.;Shin, E.H.;Yom, I.B.
    • Electronics and Telecommunications Trends
    • /
    • v.26 no.4
    • /
    • pp.105-114
    • /
    • 2011
  • 이동통신 및 위성통신 분야에 있어서 무선통신기술은 무선환경에서 신호를 보내고 받는 기능을 수행하는 중요한 분야이다. 이러한 무선통신 분야에서 송수신단을 구성하는 송수신 부품은 RF 시스템의 성능을 좌우한다. 특히, 위성통신 분야에서 신뢰성을 획득하기 위해서는 고집적화와 소형화를 통한 경쟁력 확보가 필수적인데 이를 위한 기술이 MMIC이다. MMIC 기술이란 반도체 공정을 이용하여 RF 부품을 설계하고 제작하는 기술로써 본 고에서는 MMIC 기술 소개와 이동통신 및 위성분야에서의 MMIC 기술 동향과 개발 현황, 앞으로의 전망을 개괄적으로 서술하고자 한다.

  • PDF

Design and Fabrication of MMIC Limiter with GaAs PIU Diode (GaAs PIN Diode를 이용한 MMIC 리미터 설계 및 제작)

  • 정명득;강현일
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.625-629
    • /
    • 2003
  • Low loss and high power MMIC limiters with GaAs PM diode were designed and fabricated. The new epitaxial structure of GaAs PIN diode was proposed in order to increase the high power capability. 2 types of limiter circuits have been designed and the limiting powers have been measured. Results indicated that the limiting power was depended on the circuit topology. Limiting power levels of 2-stage limiters are measured 16 ㏈m and 22 ㏈m at 14 ㎓, respectively.

Design and Fabrication of 40 ㎓ MMIC Double Balanced Star Mixer using Novel Balun (새로운 발룬 회로를 이용한 40 ㎓ 대역 MMIC 이중 평형 Star 혼합기의 설계 및 제작)

  • 김선숙;이종환;염경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2004
  • In this paper, MMIC double balanced star mixer for 40 ㎓ was implemented on GaAs substrate with backside vias. In the design of the MMIC mixer, the design of balun and diode was required. A novel balun structure using microstrip to CPS was presented. The 40 ㎓ balun was designed based on the design experience of the scale-down balun by 2 ㎓. The balun may be suitable for fabrication in MMIC process with backside via and can easily be applied for DBM(Double Balanced Mixer). A Schottky diode was designed and implemented using p-HEMT process considering the compatability with other high frequency MMIC's fabricated on p-HEMT base process. Finally, the double balanced star mixer was fabricated using the balun and the p=HEMP Schottky diode. The measured performance of mixer shows 30 ㏈ conversion loss at 18 ㏈m LO power. This insufficient performance is caused by the unwanted diode at AlGaAs junction in vertical structure of p-HEMT. If the p-HEMT's gate is recessed to AlGaAs layer, and so the diode is eliminated, the mixer's performances will be improved.

Domestic Development and Module Manufacturing Results of W-band PA and LNA MMIC Chip (W-대역 전력증폭 및 저잡음증폭 MMIC의 국내개발 및 모듈 제작 결과)

  • Kim, Wansik;Lee, Juyoung;Kim, Younggon;Yu, Kyungdeok;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.29-34
    • /
    • 2021
  • For the purpose of Application to the small radar sensor, the MMIC Chips, which are the core component of the W-band, was designed in Korea according to the characteristics of the transceiver and manufactured by 60nm GaN and 0.1㎛ GaAs pHEMT process. The output power of PA is 28 dBm at center frequency of W-band and Noise figure is 6.7 dB of switch and LNA MMIC. Output power and Noise figure of MMIC chips developed in domestic was applied to the transmitter and receiver module through W-band waveguide low loss transition structure design and impedance matching to verify the performance after the fabrication are 26.1~27.7 dBm and 7.85~10.57 dB including thermal testing, and which are close to the analysis result. As a result, these are judged that the PA and Switch and LNA MMICs can be applied to the small radar sensor.

Design of a 1.9-GHz Band AlGaAs/GaAs HBT MMIC Power Amplifier (1.9 GHz대 AlGaAs/GaAs HBT MMIC 전력증폭기 설계)

  • 채규성;김성일;민병규;박성호;이경호
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.220-224
    • /
    • 2000
  • AlGaAs/GaAs HBT를 이용하여 1.9 GHz 대역 2단 MMIC 전력증폭기를 설계하였다. HBT의 실측 S 파라미터를 이용하여 정합회로를 설계하였으며, 목적에 따라 적절한 형태의 출력 정합 회로를 하이브리드 형태로 칩 외부에 부가할 수 있도록 설계하였다. HBT의 실측정 S 파라미터의 fitting을 통하여 비선형 등가모델을 추출하였고, load-pull 시뮬레이션으로 최대 출력 정합 임피던스를 결정하였다. 시뮬레이션 결과, 29 dBm의 출력 전력, 40 %의 전력 부가 효율, 그리고 16 dB의 전력 이득을 얻었다.

  • PDF

Design and Fabrication of MMIC Amplifier for BWLL (BWLL용 MMIC 증폭기의 설계 및 제작)

  • 배현철;윤용순;박현창;박형무;이진구
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.323-330
    • /
    • 2002
  • In this paper, we have designed and fabricated an BWLL MMIC amplifier using GaAs PHEMT devices. We have optimized power divider/combiner size for small size of MMIC amplifier Using 0.2 ${\mu}$m AIGaAs/lnGaAs/GaAs PHEMT devices, the two stave MMIC amplifier has demonstrated a S$_{21}$ gain of 8.7 ㏈ with input/output return losses of lower than -10 ㏈ at 26.7 GHz. The size of this chip is 4.11 ${\times}$ 2.66 $\textrm{mm}^2$.

Miniaturized LNB Downconverter MMIC for Ku-band Satellite Communication System using InGaP/GaAs HBT Process

  • Lee, Jei-Young;Lee, Sang-Hun;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byunje;Park, Chan-Hyeong;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In this paper, LNB(low noise block) downconverter MMIC is designed for Ku-band satellite communication system using InGaP/GaAs HBT high linear process. Designed MMIC consists of low noise amplifier, double balanced mixer, and IF amplifier with a total chip area of 2.6${\times}$1.1 $\textrm{mm}^2$. Designed MMIC has the characteristics of over 37.5 ㏈ conversion gain, 14 ㏈ noise figure, ripple of 3 ㏈, and output-referred $P_{1dB}$TEX>(1 ㏈ compression power) of 2.5 ㏈m with total power dissipation of 3 V, 50 mA.

Studies on the Design and Fabrication of MMIC Power Amplifier for X-band (X-band용 MMIC 전력증폭기의 설계 및 제작에 관한 연구)

  • 이성대;이호준;이응호;윤용순;박현식;이진구
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • In this paper, we have designed and fabricated a MMIC power amplifier for X-band using AlGaAs/InGaAs/GaAs PM-HEMTs and passive devices such as Ti thin film resistors, rectangular spiral inductors and MIM capacitors. The fabricated MMIC power amplifier for X-band shows that S/ sub 21/ and S$_{11}$ are 14.804 ㏈ and -29.577 at 8.18 GHz, respectively. The chip size is 1.86$\times$1.29 $\textrm{mm}^2$.>.>.

  • PDF