• Title/Summary/Keyword: GF4 multiplier

Search Result 37, Processing Time 0.02 seconds

Design of Finite Field Multiplier based on KOA (KOA 기반의 유한체 승산기 설계)

  • Byun, Gi-Young;Na, Gi-Soo;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes new multiplicative techniques over finite field, by using KOA. At first, we regenerate the given polynomial into a binomial or a trinomial to apply our polynomial multiplicative techniques. After this, the product polynomial is archived by defined auxiliary polynomials. To perform multiplication over $GF(2^m)$ by product polynomial, a new mod $F({\alpha})$ method is induced. Using the proposed operation techniques, multiplicative circuits over $GF(2^m)$ are constructed. We compare our circuit with the previous one as proposed by Parr. Since Parr's work is premised on $GF((2^4)^n)$, it will not apply to general cases. On the other hand, the our work more expanded adaptive field in case m=3n.

  • PDF

New and Efficient Arithmatic Logic Unit Design For Calculating Error Values of Reed-Solomon Decoder (리드 솔로몬 복호기의 에러값을 구하기 위한 새로운 고속의 경제적 산술논리 연산장치의 설계에 대해)

  • An, Hyeong-Keon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.40-45
    • /
    • 2009
  • In This Paper, New Efficient Arithmatic Logic Unit Design for Calculating Error Values of Reed Solomon Decoder is described. Error Values are solved by solving Linear system of Equations, So called Newtonian set of identity equations. Here We Need Galois Multiplier, Adder, Divider on GF($2^8$) field. We prove how the Hardware circuits are improved better than the classical circuits. The method to find error location is not covered here, since many other researchers have already deeply studied it.

(Multiplexer-Based Away Multipliers over $GF(2^m))$ (멀티플렉서를 이용한 $GF(2^m)$상의 승산기)

  • Hwang, Jong-Hak;Park, Seung-Yong;Sin, Bu-Sik;Kim, Heung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.35-41
    • /
    • 2000
  • In this paper, the multiplicative algorithm of two polynomals over finite field GF(2$^{m}$ ) is presented. The proposed algorithm permits an efficient realization of the parallel multiplication using iterative arrays. At the same time, it permits high-speed operation. This multiplier is consisted of three operation unit: multiplicative operation unit, the modular operation unit, the primitive irreducible operation unit. The multiplicative operation unit is composed of AND gate, X-OR gate and multiplexer. The modular operation unit is constructed by AND gate, X-OR gate. Also, an efficient pipeline form of the proposed multiplication scheme is introduced. All multipliers obtained have low circuit complexity permitting high-speed operation and interconnection of the cells are regular, well-suited for VLSI realization.

  • PDF

A High Performance Modular Multiplier for ECC (타원곡선 암호를 위한 고성능 모듈러 곱셈기)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.961-968
    • /
    • 2020
  • This paper describes a design of high performance modular multiplier that is essentially used for elliptic curve cryptography. Our modular multiplier supports modular multiplications for five field sizes over GF(p), including 192, 224, 256, 384 and 521 bits as defined in NIST FIPS 186-2, and it calculates modular multiplication in two steps with integer multiplication and reduction. The Karatsuba-Ofman multiplication algorithm was used for fast integer multiplication, and the Lazy reduction algorithm was adopted for reduction operation. In addition, the Nikhilam division algorithm was used for the division operation included in the Lazy reduction. The division operation is performed only once for a given modulo value, and it was designed to skip division operation when continuous modular multiplications with the same modulo value are calculated. It was estimated that our modular multiplier can perform 6.4 million modular multiplications per second when operating at a clock frequency of 32 MHz. It occupied 456,400 gate equivalents (GEs), and the estimated clock frequency was 67 MHz when synthesized with a 180-nm CMOS cell library.

Design of a Small-Area Finite-Field Multiplier with only Latches (래치구조의 저면적 유한체 승산기 설계)

  • Lee, Kwang-Youb
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.9-15
    • /
    • 2003
  • An optimized finite-field multiplier is proposed for encryption and error correction devices. It is based on a modified Linear Feedback Shift Register (LFSR) which has lower power consumption and smaller area than prior LFSR-based finite-field multipliers. The proposed finite field multiplier for GF(2n) multiplies two n-bit polynomials using polynomial basis to produce $z(x)=a(x)^*b(x)$ mod p(x), where p(x) is a irreducible polynomial for the Galois Field. The LFSR based on a serial multiplication structure has less complex circuits than array structures and hybrid structures. It is efficient to use the LFSR structure for systems with limited area and power consumption. The prior finite-field multipliers need 3${\cdot}$m flip-flops for multiplication of m-bit polynomials. Consequently, they need 6${\cdot}$m latches because one flip-flop consists of two latches. The proposed finite-field multiplier requires only 4${\cdot}$m latches for m-bit multiplication, which results in 1/3 smaller area than the prior finite-field multipliers. As a result, it can be used effectively in encryption and error correction devices with low-power consumption and small area.

  • PDF

Design and Analysis of a Digit-Serial $AB^{2}$ Systolic Arrays in $GF(2^{m})$ ($GF(2^{m})$ 상에서 새로운 디지트 시리얼 $AB^{2}$ 시스톨릭 어레이 설계 및 분석)

  • Kim Nam-Yeun;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.160-167
    • /
    • 2005
  • Among finite filed arithmetic operations, division/inverse is known as a basic operation for public-key cryptosystems over $GF(2^{m})$ and it is computed by performing the repetitive $AB^{2}$ multiplication. This paper presents a digit-serial-in-serial-out systolic architecture for performing the $AB^2$ operation in GF$(2^{m})$. To obtain L×L digit-serial-in-serial-out architecture, new $AB^{2}$ algorithm is proposed and partitioning, index transformation and merging the cell of the architecture, which is derived from the algorithm, are proposed. Based on the area-time product, when the digit-size of digit-serial architecture, L, is selected to be less than about m, the proposed digit-serial architecture is efficient than bit-parallel architecture, and L is selected to be less than about $(1/5)log_{2}(m+1)$, the proposed is efficient than bit-serial. In addition, the area-time product complexity of pipelined digit-serial $AB^{2}$ systolic architecture is approximately $10.9\%$ lower than that of nonpipelined one, when it is assumed that m=160 and L=8. Additionally, since the proposed architecture can be utilized for the basic architecture of crypto-processor and it is well suited to VLSI implementation because of its simplicity, regularity and pipelinability.

A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field (233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1267-1275
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 233-bit elliptic curves over binary field defined by NIST. Scalar point multiplication that is core arithmetic in elliptic curve cryptography(ECC) was implemented by adopting modified Montgomery ladder algorithm, making it robust against simple power analysis attack. Point addition and point doubling operations on elliptic curve were implemented by finite field multiplication, squaring, and division operations over $GF(2^{233})$, which is based on affine coordinates. Finite field multiplier and divider were implemented by applying shift-and-add algorithm and extended Euclidean algorithm, respectively, resulting in reduced gate counts. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 49,271 gate equivalents (GEs), and the estimated maximum clock frequency is 345 MHz. One scalar point multiplication takes 490,699 clock cycles, and the computation time is 1.4 msec at the maximum clock frequency.