(Multiplexer-Based Away Multipliers over $GF(2^m))$

멀티플렉서를 이용한 $GF(2^m)$상의 승산기

  • 황종학 (인하대학교 전자공학과) ;
  • 박승용 (인하대학교 전자공학과) ;
  • 신부식 (안산 1대학 인터넷정보과) ;
  • 김흥수 (인하대학교 전자공학과)
  • Published : 2000.07.01

Abstract

In this paper, the multiplicative algorithm of two polynomals over finite field GF(2$^{m}$ ) is presented. The proposed algorithm permits an efficient realization of the parallel multiplication using iterative arrays. At the same time, it permits high-speed operation. This multiplier is consisted of three operation unit: multiplicative operation unit, the modular operation unit, the primitive irreducible operation unit. The multiplicative operation unit is composed of AND gate, X-OR gate and multiplexer. The modular operation unit is constructed by AND gate, X-OR gate. Also, an efficient pipeline form of the proposed multiplication scheme is introduced. All multipliers obtained have low circuit complexity permitting high-speed operation and interconnection of the cells are regular, well-suited for VLSI realization.

본 논문에서는 유한체 GF(2/sup m/)상에서 두 다항식의 승산 알고리즘을 제시하였다. 이 알고리즘은 반복적인 배열로 병렬 승산을 효과적으로 실현하며, 동일한 시간에 고속 동작을 실현한다. 제시된 승산기는 승산연산부와 mod연산부, 원시 기약다항식연산부로 구성하였다. 승산연산부는 멀티플렉서, X-OR게이트, AND게이트, MUX로 구성하였으며, mod연산부는 AND게이트, X-OR게이트로 구성하였다. 또한 본 논문에서 제시한 승산에는 효과적인 파이프형을 도입하였다. 도출된 모든 승산기는 고속 동작하며, 회로 복잡성이 감소한다. 셀들의 내부결선도는 VLSI 실현에 적합하도록 규칙적으로 구성되었다.

Keywords

References

  1. H.M. Shao, T.K.Truong, L.J. Deutsch, J.H. Yaeh and I.S. Reed, 'A VLSI design of a pipeling reed-solomon decoder,' IEEE Trans. Comput., vol. C-34, pp. 393-403, May 1985
  2. C. S. Yeh, I. S. Reed and T.K. Truong, 'Systolic multipliers for finite field GF($2^m$),' IEEE Trans. Comput., vol. C-33, pp. 357-360, Apr. 1984
  3. C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura and I.S. Reed, 'VLSI architecture for computing multiplications and inverses in GF($2^m$,),' IEEE Trans. Comput.,. vol. C-34, pp. 709-717, Aug. 1985
  4. K.C Smith, 'The prospect for multivalued logic : A technology and applications view.' IEEE Trans. Comput., vol. C-30, pp. 619-634, Sept. 1981
  5. S. L. Hurst, 'Multiple-valued logic-its future,' IEEE Trans. Comput., vol. C-33, pp. 1161-1179, Dec. 1984
  6. J. T. Butler, 'Multiple-valued logic in VLSI,' IEEE Computer Soc. Press, 1991
  7. H.K. Seong and H.S. Kim, 'A construction of celluar array multiplier over GF($2^m$),' KITE, vol. 26, no. 4, pp. 81-87. April 1989
  8. P.A. Scott, S.E. Tarvares and L.E. Peppard, 'A fast multiplier for GF($2^m$),' IEEE J. Select. Areas commun, vol. SAC-4, Jan. 1986
  9. S. Bandyopadhyay and A. Sengupta, 'Algorithms for multiplication in Galois field for implementation using systolic arrays,' IEE Proc., vol. 135, PT. E. no. 6, pp. 336-339, Nov. 1988
  10. C.L. Wang and J.L. Lin, 'Systolic array implementation of multipliers for finite fields GF($2^m$),' IEEE Trans. Circuits and Systems, vol. 38, no. 7, July 1991 https://doi.org/10.1109/31.135751
  11. J. T. Butler and H. G. Kerkhoff, 'Multiple-valued CCD circuits,' IEEE Comput., pp. 58-67, Apr. 1988 https://doi.org/10.1109/2.51
  12. M.H. Abd-El-Barr and Z. G. Vranesic, 'Cost reduction in the CCD Realization of MVMT functions,' IEEE Trans. Comput., vol. C-39, no. 5, May 1990 https://doi.org/10.1109/12.53584
  13. Kiamal Z. Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Compt., vol. 48, NO. 1, pp.15-23, Jan. 1999 https://doi.org/10.1109/12.743408
  14. H.K. Seong and K.S. Yoon, 'A Study on Implementation of Multiple-Valued Arithmetic Processer using Current Mode CMOS,' KITE, vol. 36, no. C-4, pp. 35-45. Aug. 1999
  15. C.K. Koc, and B. Sunar, 'Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998 https://doi.org/10.1109/12.660172
  16. C. Paar, P. Felischmann, and P. Roelse, 'Efficient multiplier architectures for Galois fields GF($2^{4nL}$), IEEE Trans. Comput., vol. C-47, No. 2, pp.162-170, Feb. 1998 https://doi.org/10.1109/12.663762