• 제목/요약/키워드: GEAR

검색결과 2,760건 처리시간 0.033초

Differential gear case와 피니언 샤프트 체결을 위한 핀 압입 장치설계 및 측정에 관한 연구 (A Study on the Design and Measurement of Pin Press-Fit Device for Fastening Differential Gear Case and Pinion Shaft)

  • 장태환;권진욱;엄지현;김정아;김태규
    • 열처리공학회지
    • /
    • 제34권1호
    • /
    • pp.25-30
    • /
    • 2021
  • The differential gear system is a device designed to distribute the driving force of both vehicle wheels and control the rotational speed when the vehicle turns on a curve. The differential device consists of a differential gear case, a ring gear, and a pressure ring. A differential pinion gear and side gear are mounted on the differential pinion shaft inside the differential gear case. In this study, a pin press-fitting device that mounts the pinier gear and side gear to the differential pinion shaft in the differential gear case was designed, and a jig device for pin press-fitting using servo press was developed. In addition, by precisely measuring the pin press-in load and press-in distance according to the pin hole diameter of the differential gear shaft, the optimization of the pin pressin process was established.

Experimental Investigation of the Effect of Lead Errors on Helical Gear and Bearing Vibration Transmission Characteristics

  • Park, Chan-Il;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1395-1403
    • /
    • 2002
  • The characteristics of gear meshing vibration undesgo change as the vibration is transmitted from the gear to the housing. Therefore, vibration transmission characteristics of helical gear systems must be understood before the effective methods of reducing gear noise can be found. In this work, using a helical gear with different lead errors, the gear vibration in the rotational direction and the bearing vibration are measured. The frequency characteristics of gear and bearing vibration are investigated and a comparson is also provided.

사출 성형 플라스틱 단붙이 기어의 강도평가 (Strength Estimation of Injection Molded Plastic Stepped Spur Gear)

  • 정태형;문창기;하영욱
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

원통 기어로 구성된 다단 기어열의 기어비 분할법 개발 (New Methods to Split Overall Gear Ratio of the Cylindrical Multi-Stage Gear Train)

  • 배인호;정태형
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.45-51
    • /
    • 2002
  • The existing methods to split overall gear ratio of the cylindrical multi-stage gear train have their own limitations to be used in practical design and are also problematic to be implemented in a formalized algerian. This paper proposes two types of new methods to find gear ratios best approximating the overall gear ratio. The proposed methods are quite general to be applied to the gear train having any number of stages, and offer a considerably good result in a very short time. The first method uses the random search method and the second one is based on the simulated annealing algorithm. The proposed algorithms are expected to be very useful not only as an independent program to split overall gear ratio, but also as a desist sub-module for the integrated desist system of multi-stage gear drives.

Development of a Design System for Multi-Stage Gear Driver (1st Report : Proposal Formal Processes for Dimensional Design)

  • Chong, Tae-Hyoun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.57-64
    • /
    • 2001
  • In recent years, the concern of designing multi-stage gear drives ha increased with more application of them in high-speed and high-load. Until now, however, the researches on the design of gear drives have been focused on single gear pairs. Thus the design practice for multi-stage gear drives has been depended on experiences and expertise of designers and carried out commonly by trial and error. We propose an automation algorithm for the design of two-and three-strage cylindrical gear drives. The two types of dimensional design processes have been proposed to determine gear dimensions in a formal way. The first design process(Process I) uses to total volume of gears to determine gear ration , and uses K factor , unit load and aspect ration to determine gear dimensions, The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and gear dimensions. Process I and Process II employ material date from AGMA and ISO standards, respectively. The configuration design determines the positions of gears with minimizing the volume of gearbox by using a simulated annealing algorithm. The availability of the design algorithm is validated by the design examples to two-and three=stage gear drives.

  • PDF

Applying Fishing-gear Simulation Software to Better Estimate Fished Space as Fishing Effort

  • Lee, Ji-Hoon;Lee, Chun-Woo;Choe, Moo-Youl;Lee, Gun-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제14권2호
    • /
    • pp.138-147
    • /
    • 2011
  • Modeling fishing-gear systems is essential to better understand the factors affecting their movement and for devising strategies to control movement. In this study, we present a generalized mathematical modeling methodology to analyze fishing gear and its various components. Fishing gear can be divided into a finite number of elements that are connected with flexible lines. We use an algorithm to develop a numerical method that calculates precisely the shape and movement of the gear. Fishinggear mathematical models have been used to develop software tools that can design and simulate dynamic movement of novel fishing-gear systems. The tool allowed us to predict the shape and motion of the gear based on changes in operation and gear design parameters. Furthermore, the tool accurately calculated the swept volume of towed gear and the surrounding volume of purse-seine gear. We analyzed the fished volume for trawl and purse-seine gear and proposed a new definition of fishing effort, incorporating the concept of fished space. This method may be useful for quantitative fishery research, which requires a good understanding of the selectivity and efficiency of fishing gear used in surveys.

코니칼 인볼류트 기어의 Total 설계에 관한 연구 (Study on the Total Design of a Conical Involute Gear)

  • 김준성;이도영;강재화;허철수;류성기
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.100-107
    • /
    • 2014
  • Currently, there are many power transmission devices, including gears, friction wheels, chains, and belts. Because the power transmission of gears is most certainin these devices, gears are widely used in different power transmission fields and environments. In accordance with the gear shape, gears can be classified as cylindrical gears and conical gears. A cylindrical gear, which provides a means of power transmission under parallel axis and skewed axis conditions, contains a spur gear, a helical gear and a worm gear. A conical gear, which can be used on a skewed axis as well as parallel and crossed axes, includes a bevel gear(e.g., straight bevel, spiral bevel, hypoid gear) and a conical involute gear(or a bevel oid gear). In this paper, a conical involute gear which utilizes the fabrication method of other involute gears such as spur and helical gears using a CNC hobbing machine is discussed.

The Stress Analysis of Planetary Gear System of Mixer Reducer for Concrete Mixer Truck

  • Bae, Myung Ho;Bae, Tae Yeol;Cho, Yon Sang;Son, Ho Yeon;Kim, Dang Ju
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.77-81
    • /
    • 2015
  • In general, the gears of mixer reducer for concrete mixer truck make use of the differential type planetary gear system to rotate mixer drum smoothly on the initial conditions. The planetary gear system is very important part of mixer reducer for concrete mixer truck because of strength problem. In the present study, calculating the gear specifications and analyzing the gear bending & compressive stresses of the differential planetary gear system for mixer reducer are necessary to analyze gear bending and compressive stresses confidently, for optimal design of the planetary gear system in respect to cost and reliability. As a result, analyzing actual gear bending and compressive stresses of the planetary gear system using Lewes & Hertz equation and verifying the calculated specifications of the planetary gear system, evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears.

Analysis of Coaxial Magnetic Gear with Low Gear Ratios for Application in Counter Rotating Systems

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.186-192
    • /
    • 2015
  • This paper describes the electromagnetic and mechanical characteristics of coaxial magnetic gear (CMG) with a low gear ratio. The analysis models are restricted to a CMG with a gear ratio of less than 2. The electromagnetic characteristics including transmitted torque and iron losses are presented according to the variation of the gear ratio. The pole pairs of high speed rotor are chosen as 6, 8 and 10 by considering the torque capability. As the gear ratio approaches 1, both iron losses on the ferromagnetic materials and eddy current losses on the rotor permanent magnets are increased. The radial and tangential forces on the modulating pieces are calculated using the Maxwell stress tensor. When the maximum force is exerted on the modulating pieces, the mechanical characteristics including stress and deformation are derived by structural analysis. In CMG models with a low gear ratio, the maximum radial force acting on modulating pieces is larger than that in CMG models with a high gear ratio, and the normal stress and normal deformation are increased in a CMG with a low gear ratio. Therefore, modulating pieces should be designed to withstand larger radial forces in CMG with a low gear ratio compared to CMG with a high gear ratio.

차량용 윈도우 모터를 적용한 감속기 일체형 구동부 개발 (Development of Speed Reducer Integrated Driving system Apply to Vehicle Window Motor)

  • 염광욱;함성훈
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.57-62
    • /
    • 2016
  • In this study, design the core part of the driving of the robot. The power of the driving is window motor for automobiles obtained by using a method of directly to the motor shaft of the worm gear type. The decelerator consists of a worm gear to receive power from the motor shaft, Helical gear contact to worm gear, a pinion gear to be connected in line with the helical gear, and an output shaft to be engaged to the pinion gear. Drive system by using the power from the motor shaft based on the deceleration gear designed by the gear ratio set by the gear teeth increases the torque.