• Title/Summary/Keyword: G/F

Search Result 5,910, Processing Time 0.034 seconds

TIGHT TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n)-CRITICAL GRAPHS

  • Gao, Wei;Liang, Li;Xu, Tianwei;Zhou, Juxiang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.55-65
    • /
    • 2014
  • A graph G is called a fractional (g, f, n)-critical graph if any n vertices are removed from G, then the resulting graph admits a fractional (g, f)-factor. In this paper, we determine the new toughness condition for fractional (g, f, n)-critical graphs. It is proved that G is fractional (g, f, n)-critical if $t(G){\geq}\frac{b^2-1+bn}{a}$. This bound is sharp in some sense. Furthermore, the best toughness condition for fractional (a, b, n)-critical graphs is given.

The Study on the Upper-bound of Labeling Number for Chordal and Permutation Graphs (코달 및 순열 그래프의 레이블링 번호 상한에 대한 연구)

  • Jeong, Tae-Ui;Han, Geun-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2124-2132
    • /
    • 1999
  • Given a graph G=(V,E), Ld(2,1)-labeling of G is a function f : V(G)$\longrightarrow$[0,$\infty$) such that, if v1,v2$\in$V are adjacent, $\mid$ f(x)-f(y) $\mid$$\geq$2d, and, if the distance between and is two, $\mid$ f(x)-f(y) $\mid$$\geq$d, where dG(,v2) is shortest distance between v1 and in G. The L(2,1)-labeling number (G) is the smallest number m such that G has an L(2,1)-labeling f with maximum m of f(v) for v$\in$V. This problem has been studied by Griggs, Yeh and Sakai for the various classes of graphs. In this paper, we discuss the upper-bound of ${\lambda}$ (G) for a chordal graph G and that of ${\lambda}$(G') for a permutation graph G'.

  • PDF

ON FARTHEST POINTS IN METRIC SPACES

  • Narang, T.D.
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • For A bounded subset G of a metric Space (X,d) and $\chi \in X$, let $f_{G}$ be the real-valued function on X defined by $f_{G}$($\chi$)=sup{$d (\chi, g)\in:G$}, and $F(G,\chi)$={$z \in X:sup_{g \in G}d(g,z)=sup_{g \in G}d(g,\chi)+d(\chi,z)$}. In this paper we discuss some properties of the map $f_G$ and of the set $ F(G, \chi)$ in convex metric spaces. A sufficient condition for an element of a convex metric space X to lie in $ F(G, \chi)$ is also given in this pope.

  • PDF

A RELATIVE NAIELSEN COINCIDENCE NUMBER FOR THE COMPLEMENT, I

  • Lee, Seoung-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.709-716
    • /
    • 1996
  • Nielsen coincidence theory is concerned with the determinatin of a lower bound of the minimal number MC[f,g] of coincidence points for all maps in the homotopy class of a given map (f,g) : X $\to$ Y. The Nielsen Nielsen number $N_R(f,g)$ (similar to [9]) is introduced in [3], which is a lower bound for the number of coincidence points in the relative homotopy class of (f,g) and $N_R(f,g) \geq N(f,g)$.

  • PDF

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

ON PROJECTIVE REPRESENTATIONS OF A FINITE GROUP AND ITS SUBGROUPS I

  • Park, Seung-Ahn;Park, Eun-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.387-397
    • /
    • 1996
  • Let G be a finite group and F be a field of characteristic $p \geq 0$. Let $\Gamma = F^f G$ be a twisted group algebra corresponding to a 2-cocycle $f \in Z^2(G,F^*), where F^* = F - {0}$ is the multiplicative subgroup of F.

  • PDF

Fumonisin Production by Field Isolates of the Gibberella fujikuroi Species Complex and Fusarium commune Obtained from Rice and Corn in Korea (우리나라 벼와 옥수수로부터 분리한 Gibberella fujikuroi 종복합체와 Fusarium commune 소속 균주의 푸모니신 생성능)

  • Lee, Soo-Hyung;Kim, Ji-Hye;Son, Seung-Wan;Lee, Theresa;Yun, Sung-Hwan
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Gibberellea fujikuroi species (Gf) complex comprises at least 15 species, most of which not only causes serious plant diseases, but also produces mycotoxins including fumonisins. Here, we focused on the abilities of the field isolates belonging to the Gf complex associated with rice and corn, respectively in Korea to produce fumonisin, all of which were confirmed to carry FUM1, the polyketide synthase gene essential for fumonisin biosynthesis. A total of 88 Gf complex isolates (55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, and 1 F. concentricum), and 4 isolates of F. commune, which is a non-member of Gf complex, were grown on rice substrate and determined for their production levels of fumonisins by a HPLC method. Most isolates of F. verticillioides and F. proliferatum, regardless of host origins, produced fumonisin $B_1$ and $B_2$ at diverse ranges of levels ($0.5-2,686.4{\mu}g/g$, and $0.7-1,497.6{\mu}g/g$, respectively). In contrast, all the isolates of F. fujikuroi and other Fusarium species examined produced no fumonisins or only trace amounts ($<10{\mu}g/g$) of fumonisins. Interestingly, the frequencies of relatively high fumonisin-producers among the F. proliferatum and F. fujikuroi isolates derived from corn were higher than those among the fungal isolates from rice. In addition, it is a first report demonstrating the ability of the FUM1-carrying F. commune isolates from rice to produce fumonisins.

UNIQUENESS THEOREMS OF MEROMORPHIC FUNCTIONS OF A CERTAIN FORM

  • Xu, Junfeng;Han, Qi;Zhang, Jilong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1079-1089
    • /
    • 2009
  • In this paper, we shall show that for any entire function f, the function of the form $f^m(f^n$ - 1)f' has no non-zero finite Picard value for all positive integers m, n ${\in}\;{\mathbb{N}}$ possibly except for the special case m = n = 1. Furthermore, we shall also show that for any two nonconstant meromorphic functions f and g, if $f^m(f^n$-1)f' and $g^m(g^n$-1)g' share the value 1 weakly, then f $\equiv$ g provided that m and n satisfy some conditions. In particular, if f and g are entire, then the restrictions on m and n could be greatly reduced.

$L^p$ 공간의 가분성에 관한 연구

  • 김만호
    • The Mathematical Education
    • /
    • v.21 no.3
    • /
    • pp.7-11
    • /
    • 1983
  • A measurable function f defined on a measurable subset A of the real line R is called pth power summable on A if │f│$^{p}$ is integrable on A and the set of all pth power summable functions on A is denoted by L$^{p}$ (A). For each member f in L$^{p}$ (A), we define ∥f∥$_{p}$ =(equation omitted) For real numbers p and q where (equation omitted) and (equation omitted), we discuss the Holder's inequality ∥fg∥$_1$<∥f∥$_{p}$ ∥g∥$_{q}$ , f$\in$L$^{p}$ (A), g$\in$L$^{q}$ (A) and the Minkowski inequality ∥+g∥$_{p}$ <∥f∥$_{p}$ +∥g∥$_{p}$ , f,g$\in$L$^{p}$ (A). In this paper also discuss that L$_{p}$ (A) becomes a metric space with the metric $\rho$ : L$^{p}$ (A) $\times$L$^{p}$ (A) longrightarrow R where $\rho$(f,g)=∥f-g∥$_{p}$ , f,g$\in$L$^{p}$ (A). Then, in this paper prove the Riesz-Fischer theorem, i.e., the space L$^{p}$ (A) is complete and that the space L$^{p}$ (A) is separable.

  • PDF

Hamiltonian Paths in Restricted Hypercube-Like Graphs with Edge Faults (에지 고장이 있는 Restricted Hypercube-Like 그래프의 해밀톤 경로)

  • Kim, Sook-Yeon;Chun, Byung-Tae
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.225-232
    • /
    • 2011
  • Restricted Hypercube-Like (RHL) graphs are a graph class that widely includes useful interconnection networks such as crossed cube, Mobius cube, Mcube, twisted cube, locally twisted cube, multiply twisted cube, and generalized twisted cube. In this paper, we show that for an m-dimensional RHL graph G, $m{\geq}4$, with an arbitrary faulty edge set $F{\subset}E(G)$, ${\mid}F{\mid}{\leq}m-2$, graph $G{\setminus}F$ has a hamiltonian path between any distinct two nodes s and t if dist(s, V(F))${\neq}1$ or dist(t, V(F))${\neq}1$. Graph $G{\setminus}F$ is the graph G whose faulty edges are removed. Set V(F) is the end vertex set of the edges in F and dist(v, V(F)) is the minimum distance between vertex v and the vertices in V(F).