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UNIQUENESS THEOREMS OF MEROMORPHIC
FUNCTIONS OF A CERTAIN FORM

Junfeng Xu, Qi Han, and Jilong Zhang

Abstract. In this paper, we shall show that for any entire function f ,
the function of the form fm(fn − 1)f ′ has no non-zero finite Picard
value for all positive integers m, n ∈ N possibly except for the special
case m = n = 1. Furthermore, we shall also show that for any two non-
constant meromorphic functions f and g, if fm(fn−1)f ′ and gm(gn−1)g′

share the value 1 weakly, then f ≡ g provided that m and n satisfy some
conditions. In particular, if f and g are entire, then the restrictions on
m and n could be greatly reduced.

1. Introduction and main results

In this paper, a meromorphic function will always mean meromorphic in the
complex plane C. We adopt the standard notations in the Nevanlinna value
distribution theory of meromorphic functions such as T (r, f), m(r, f), N(r, f)
and N̄(r, f) as explained in [4, 7, 12]. For any non-constant meromorphic
function f , we denote by S(r, f) any quantity satisfying S(r, f) = o

(
T (r, f)

)
,

possibly outside a set of finite linear measure that is not necessarily the same
at each occurrence.

Let f be a non-constant meromorphic function on C, let a ∈ C be a finite
value, and let k be a positive integer or infinity. We denote by E(a, f) the set
of zeros of f − a and count multiplicities, while by Ē(a, f) the set of zeros of
f − a but ignore multiplicities. Also, we denote by Ek)(a, f) the set of zeros
of f − a with multiplicities less than or equal to k and count multiplicities.
Obviously, E(a, f) = E∞)(a, f). For the value ∞, define E(∞, f) := E(0, 1/f).
Ē(∞, f) and Ek)(∞, f) are similarly defined. For a ∈ C ∪ {∞}, we denote by
Nk)

(
r, 1/(f − a)

)
the counting function corresponding to the set Ek)(a, f),

while by N(k+1

(
r, 1/(f − a)

)
the counting function corresponding to the set
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E(k+1(a, f) := E(a, f)\Ek)(a, f). Also, we denote by N̄k)

(
r, 1/(f − a)

)
and

N̄(k+1

(
r, 1/(f −a)

)
the reduced forms of Nk)

(
r, 1/(f −a)

)
and N(k+1

(
r, 1/(f −

a)
)
, respectively.

Hayman proposed the well-known conjecture in [5].

Hayman Conjecture. If an entire function f satisfies fnf ′ 6= 1 for all n ∈ N,
then f is a constant.

In fact, it has been affirmed by Hayman himself in [6] for the cases n > 1
while by Clunie in [2] for the cases n ≥ 1, respectively. In 1997, C. C. Yang and
X. H. Hua studied the unicity of the differential monomials fnf ′ and proved
the following uniqueness theorem in [10].

Theorem A. Let f and g be two non-constant meromorphic functions, let
a be a non-zero finite value, and let n ≥ 11, be a positive integer. If fnf ′

and gng′ share a CM, then either f = dg for some (n + 1)-th root of unity
d, or f = c1e

cz and g = c2e
−cz for three non-zero constants c, c1 and c2 with

(c1c2)n+1c2 = −a2.

In 2001, by using the same argument as that in [6], M. L. Fang and W. Hong
studied the value distribution of fm(f − 1)f ′ with an entire function f and
proved the following Theorem B. Also, they discussed the uniqueness problem
of fm(f−1)f ′ with an entire function f and obtained the following Theorem C
(see [3]).

Theorem B. If an entire function f satisfies fm(f − 1)f ′ 6= 1 for all m ∈ N
with m ≥ 2, then f is a constant.

Theorem C. Let f and g be two non-constant entire functions. If fm(f−1)f ′

and gm(g − 1)g′ share the value 1 CM, then f ≡ g provided that m ≥ 11.

In 2004, W. C. Lin and H. X. Yi improved Theorem C, reducing the re-
striction on the lower bound of the positive integer m from 11 to 7 (see [8]).
Furthermore, in that same paper, they studied the uniqueness problem of mero-
morphic functions with the same form as that shown above and obtained the
following result.

Theorem D. Let f and g be two non-constant meromorphic functions. If
fm(f − 1)f ′ and gm(g − 1)g′ share the value 1 CM, and if Θ(∞, f) > 2

m+1 ,

then f ≡ g provided that m ≥ 11. Where Θ(∞, f):= 1− lim supr→∞
N̄(r,f)
T (r,f) .

In this paper, we shall consider the function with the form fm(fn−1)f ′ and
prove the following uniqueness theorems.

Theorem 1.1. Let f be a non-constant entire function. Then, fm(fn − 1)f ′

has no non-zero finite Picard value for all positive integers m, n ∈ N possibly
except for the special case m = n = 1.
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Theorem 1.2. Let f and g be two non-constant meromorphic functions. If
E3)

(
1, fm(fn − 1)f ′

)
= E3)

(
1, gm(gn − 1)g′

)
, then f ≡ g provided that m >

n + 10, n ≥ 2 and (m + 1, n) = 1.

Theorem 1.3. Let f and g be two non-constant entire functions. If

E3)

(
1, fm(fn − 1)f ′

)
= E3)

(
1, gm(gn − 1)g′

)
,

then f ≡ g provided that m > n + 5.

Theorem 1.4. Let f and g be two non-constant meromorphic functions. If
E2)

(
1, fm(fn − 1)f ′

)
= E2)

(
1, gm(gn − 1)g′

)
, then f ≡ g provided that m >

3n
2 + 12, n ≥ 2 and (m + 1, n) = 1.

Theorem 1.5. Let f and g be two non-constant entire functions. If

E2)

(
1, fm(fn − 1)f ′

)
= E2)

(
1, gm(gn − 1)g′

)
,

then f ≡ g provided that m > 3n+13
2 .

Theorem 1.6. Let f and g be two non-constant meromorphic functions. If
E1)

(
1, fm(fn − 1)f ′

)
= E1)

(
1, gm(gn − 1)g′

)
, then f ≡ g provided that m >

3n + 18, n ≥ 2 and (m + 1, n) = 1.

Theorem 1.7. Let f and g be two non-constant entire functions. If

E1)

(
1, fm(fn − 1)f ′

)
= E1)

(
1, gm(gn − 1)g′

)
,

then f ≡ g provided that m > 3n + 11.

Remark 1.8. Obviously, Theorem 1.1 is an improvement of Theorem B while
Theorem 1.3 is an improvement of Theorem C and Theorem 1 in [8].

Example 1. Set f := ez

ez−1 and g := ζf = ζez

ez−1 for some primitive n-th root
of unity ζ with ζ 6= 1 and n ≥ 2. Then, for arbitrary positive integer m ∈ N,

fm(fn − 1)f ′ = −e(m+1)z
(
enz − (ez − 1)n

)

(ez − 1)m+n+2

and

gm(gn − 1)g′ = −ζm+1e(m+1)z
(
enz − (ez − 1)n

)

(ez − 1)m+n+2
.

Hence, fm(fn − 1)f ′ and gm(gn − 1)g′ share the value 0 CM. However, f 6≡ g.

Example 2. Set f := ez and g := ζf = ζez for some primitive n-th root of
unity ζ with ζ 6= 1 and n ≥ 2. Then, for arbitrary positive integer m ∈ N,

fm(fn − 1)f ′ = e(m+1)z(enz − 1), gm(gn − 1)g′ = ζm+1e(m+1)z(enz − 1).

Hence, fm(fn − 1)f ′ and gm(gn − 1)g′ share the value 0 CM. However, f 6≡ g.

Example 3. Set f := ez and g := e−z. Then, for arbitrary positive integers
m, n ∈ N,

fm(fn − 1)f ′ = e(m+1)z(enz − 1), gm(gn − 1)g′ = e−(m+n+1)z(enz − 1).

Hence, fm(fn − 1)f ′ and gm(gn − 1)g′ share the value 0 CM. However, f 6≡ g.
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Example 4. Set f := ez + 1
2 and g := −ez + 1

2 . Then, for m = n = 1,

f(f − 1)f ′ = ez(ez +
1
2
)(ez − 1

2
), g(g − 1)g′ = −ez(ez +

1
2
)(ez − 1

2
).

Hence, f(f − 1)f ′ and g(g − 1)g′ share the value 0 CM. However, f 6≡ g.

2. Some lemmas

Lemma 2.1. Let f and g be two non-constant meromorphic functions sat-
isfying Ek)(1, f) = Ek)(1, g) for some positive integer k ∈ N. Define H as
below

H =
(f ′′

f ′
− 2

f ′

f − 1
)− (g′′

g′
− 2

g′

g − 1
)
.

If H 6≡ 0, then

N(r,H) ≤ N̄(2(r, f) + N̄(2(r,
1
f

) + N̄(2(r, g) + N̄(2(r,
1
g
) + N0(r,

1
f ′

) + N0(r,
1
g′

)

+N̄(k+1(r,
1

f − 1
) + N̄(k+1(r,

1
g − 1

) + S(r, f) + S(r, g),

where N0(r, 1
f ′ ) denotes the counting function of zeros of f ′ but not zeros of

f(f − 1), and N0(r, 1
g′ ) is similarly defined.

Proof. It is easy to see that simple poles of f is not poles of f ′′

f ′ − 2f ′

f−1 and simple

poles of g is not poles of g′′

g′ − 2g′

g−1 . From the assumption that Ek)(1, f) =
Ek)(1, g), we can easily obtain the conclusion. ¤

Lemma 2.2 ([13]). Under the condition of Lemma 2.1, we have

N1)(r,
1

f − 1
) = N1)(r,

1
g − 1

) ≤ N(r,H) + S(r, f) + S(r, g).

Lemma 2.3 ([13]). Let H be defined as above. If H ≡ 0, then either f ≡ g or
fg ≡ 1 provided that

lim sup
r→∞,r∈I

N̄(r, f) + N̄
(
r, 1

f

)
+ N̄(r, g) + N̄

(
r, 1

g

)

T (r)
< 1,

where T (r) := max
{
T (r, f), T (r, g)

}
and I is a set with infinite linear measure.

Lemma 2.4 ([11, 13]). Let m and n be two positive integers such that m ≥ 5,
(m,n) = 1 and 1 ≤ n ≤ m − 2. For any two non-constant meromorphic
functions f and g, if P (f) ≡ P (g), then f ≡ g. Where P (z) = zm + azn + b,
a polynomial, with a ∈ C\{0} and b ∈ C.
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3. Proof of Theorem 1.1

Since every polynomial has no finite Picard value, so without loss of gener-
ality, we may assume that f is transcendental.

Define F := fm(fn − 1)f ′ and F1 := fm+n+1

m+n+1 − fm+1

m+1 . Then, F ′1 = F .

At first, let’s assume m ≥ 2 and F 6= a for some non-zero finite value a.
Then, applying the second main theorem to F , together with the lemma of
logarithmic derivative and Valirons’ Lemma, to conclude that

(m + n + 1)T (r, f)

= T (r, F1) + O(1)

≤ T (r, F ) + N(r,
1
F1

)−N(r,
1
F

) + S(r, f)

≤ N̄(r,
1
F

) + N(r,
1
F1

)−N(r,
1
F

) + S(r, f)

≤ N̄(r,
1
f

) +
n∑

j=1

N̄(r,
1

f − ωj
) + N̄(r,

1
f ′

) + (m + 1)N(r,
1
f

)

+ nT (r, f)−mN(r,
1
f

)−
n∑

j=1

N(r,
1

f − ωj
)−N(r,

1
f ′

) + S(r, f)

≤ 2N(r,
1
f

) + nT (r, f) + S(r, f) ≤ (n + 2)T (r, f) + S(r, f),

where ωn
j = 1, are the n-th roots of unit for j = 1, 2, . . . , n. However, the above

inequality means (m− 1)T (r, f) ≤ S(r, f), which is possible since m− 1 > 0.
Now, we consider the special case m = 1.
If n = 2, we define ϕ = f2 − 1. Obviously, f(f2 − 1)f ′ can be rewritten as

1
2ϕϕ′. Hence, it has no non-zero finite Picard value by Hayman Conjecture.

If n ≥ 3, we proceed our proof by contradiction. Assume, to the contrary,
that there exists a value a ∈ C\{0} such that F − a = peα. Then,

(3.1) f(fn − 1)f ′ − a = peα,

where p is a non-zero polynomial, and α is a non-constant entire function
satisfying T (r, eα) = O

(
T (r, f)

)
.

Rewriting (3.1) as

(3.2) fn+1f ′ − ff ′ − a = peα

and taking derivatives on both sides of (3.2), we get

(3.3) (n + 1)fn(f ′)2 + fn+1f ′′ − (f ′)2 − ff ′′ = (p′ + pα′)eα.

Eliminating eα by the above two equations yields

(3.4) fn
(
(n + 1)(f ′)2 + ff ′′ − βff ′

)
= (f ′)2 + ff ′′ − βff ′ − aβ,

where β :=
(
α′ + p′

p

)
satisfying T (r, β) = S(r, f).
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Applying Clunie’s Lemma ([1, 4]) to (3.4) for n ≥ 3 and γQ[f ] = 2 to
derive that m

(
r, P [f ]

)
= S(r, f) and m

(
r, fP [f ]

)
= S(r, f), where P [f ] :=

(n+1)(f ′)2+ff ′′−βff ′ and Q[f ] := (f ′)2+ff ′′−βff ′−aβ. If P [f ] ≡ 0, then
Q[f ] ≡ 0, too. Thus we get n(f ′)2 + aβ ≡ 0, which means T (r, f ′) = S(r, f);
then T (r, f ′′) = S(r, f) by the lemma of logarithmic derivative. Since now
f ≡ (n+1)(f ′)2

βf ′−f ′′ , then T (r, f) = S(r, f), which is impossible. So P [f ] 6≡ 0. Since
we assume f is entire, then

T (r, f) = T
(
r,

fP [f ]
P [f ]

)
+ O(1)

≤ T (r, fP [f ]) + T (r, P [f ]) + O(1) ≤ S(r, f).

This contradiction finishes the proof. ¤

4. Proof of Theorem 1.2

Similar to the proof of Theorem 1.1, we get

(4.1)
(m + n + 1)T (r, f) = T (r, F1) + O(1)

≤ T (r, F ) + N(r,
1
F1

)−N(r,
1
F

) + S(r, f),

(4.2)
(m + n + 1)T (r, g) = T (r,G1) + O(1)

≤ T (r,G) + N(r,
1

G1
)−N(r,

1
G

) + S(r, g),

where G and G1 are similarly defined as that of F and F1 in Theorem 1.1.
First of all, we suppose that H 6≡ 0, where we replace f and g by F and G

respectively in Lemmas 2.1 and 2.2. Then,
(4.3)

N1)(r,
1

F − 1
) ≤ N̄(2(r, F ) + N̄(2(r,G) + N̄(2(r,

1
F

) + N̄(2(r,
1
G

) + N0(r,
1
F ′

)

+ N0(r,
1
G′

) + N̄(4(r,
1

F − 1
) + N̄(4(r,

1
G− 1

)

+ S(r, f) + S(r, g).

Applying the second main theorem to F and G jointly to obtain that

(4.4)

T (r, F ) + T (r,G)

≤ N̄(r,
1
F

) + N̄(r,
1

F − 1
) + N̄(r, F ) + N̄(r,

1
G

) + N̄(r,
1

G− 1
)

+ N̄(r,G)−N0(r,
1
F ′

)−N0(r,
1
G′

) + S(r, f) + S(r, g).

Noting that
(4.5)

N̄(r,
1

F − 1
)− 1

2
N1)(r,

1
F − 1

) + N̄(4(r,
1

F − 1
) ≤ 1

2
N(r,

1
F − 1

) ≤ 1
2
T (r, F ),
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(4.6)

N̄(r,
1

G− 1
)− 1

2
N1)(r,

1
G− 1

) + N̄(4(r,
1

G− 1
) ≤ 1

2
N(r,

1
G− 1

) ≤ 1
2
T (r,G);

from (4.3)-(4.6), we have

(4.7)
T (r, F ) + T (r,G) ≤ 2{N2(r, F ) + N2(r,G) + N2(r,

1
F

) + N2(r,
1
G

)}
+ S(r, f) + S(r, g),

where

N2(r, F ) := N̄(r, F ) + N(2(r, F ), N2

(
r, 1/F

)
:= N̄

(
r, 1/F

)
+ N̄(2

(
r, 1/F

)
,

and N2(r,G) and N2

(
r, 1/G

)
are similarly defined.

From the assumptions of Theorem 1.2, we get

(4.8) N2(r, F )+N2(r,
1
F

) ≤ 2N̄(r, f)+2N(r,
1
f

)+
n∑

i=1

N(r,
1

f − ωi
)+N(r,

1
f ′

),

(4.9) N2(r,G)+N2(r,
1
G

) ≤ 2N̄(r, g)+2N(r,
1
g
)+

n∑

i=1

N(r,
1

g − ωi
)+N(r,

1
g′

).

Noting that

(4.10) N(r,
1
F1

)−N(r,
1
F

) ≤ nT (r, f)+N(r,
1
f

)−
n∑

i=1

N(r,
1

f − ωi
)−N(r,

1
f ′

),

(4.11) N(r,
1

G1
)−N(r,

1
G

) ≤ nT (r, g)+N(r,
1
g
)−

n∑

i=1

N(r,
1

g − ωi
)−N(r,

1
g′

),

and

(4.12) N(r,
1
f ′

) ≤ N(r,
1
f

) + N̄(r, f) + S(r, f);

from (4.1)-(4.2) and (4.7)-(4.12), we have

(m+n+1)
(
T (r, f)+T (r, g)

) ≤ (2n+11)
(
T (r, f)+T (r, g)

)
+S(r, f)+S(r, g).

Then,

(m− n− 10)
(
T (r, f) + T (r, g)

) ≤ S(r, f) + S(r, g),

which is impossible since we assume m > n + 10.
Now we consider the case H ≡ 0. It is not difficult to see

1
G− 1

=
A

F − 1
+ B
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for some constants A ∈ C\{0} and B ∈ C. Obviously,

(4.13)

N̄(r, F ) + N̄(r,
1
F

) + N̄(r,G) + N̄(r,
1
G

)

≤ N̄(r, f) + N̄(r,
1
f

) +
n∑

i=1

N̄(r,
1

f − ωi
) + N̄(r,

1
f ′

) + N̄(r, g)

+ N̄(r,
1
g
) +

n∑

i=1

N̄(r,
1

g − ωi
) + N̄(r,

1
g′

) + S(r, f) + S(r, g)

≤ (2n + 4)T0(r) + N̄(r,
1
f ′

) + N̄(r,
1
g′

) + S(r, f) + S(r, g),

where T0(r) := max
{
T (r, f), T (r, g)

}
.

Noting that

T
(
r, fm(fn − 1)

)

≤ m
(
r, fm(fn − 1)f ′

)
+ m

(
r,

1
f ′

)
+ N

(
r, fm(fn − 1)f ′

)
+ S(r, f)

≤ T (r, F ) + m
(
r,

1
f ′

)
+ S(r, f),

N
(
r,

1
f ′

) ≤ T (r, f ′)−m
(
r,

1
f ′

)
+ S(r, f) ≤ 2T (r, f)−m

(
r,

1
f ′

)
+ S(r, f),

and 2n + 8 < m + n, from (4.13) we get

N̄(r, F ) + N̄(r,
1
F

) + N̄(r,G) + N̄(r,
1
G

) < T (r) + S(r, F ) + S(r,G),

where T (r) := max
{
T (r, F ), T (r,G)

}
.

Thus, by Lemma 2.3, we have either FG ≡ 1 or F ≡ G.
Now we consider the following two cases.

Case (i): FG ≡ 1.

We have
fm(fn − 1)f ′gm(gn − 1)g′ ≡ 1.

Let z0 be a zero of f −ωi with multiplicity p. Then it must be a pole of g, thus
2p− 1 ≥ (m + n + 1) + 1, which means p ≥ m+n+3

2 .
If n ≥ 3, by the second main theorem, we have

T (r, f) ≤
3∑

i=1

N̄(r,
1

f − ωi
) + S(r, f)

≤
3∑

i=1

2
m + n + 3

N(r,
1

f − ωi
) + S(r, f)

≤ 6
m + n + 3

T (r, f) + S(r, f),

which is absurd since we assume m > n + 10.
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If n = 2, we see that a zero z1 of f with multiplicity q must be a pole
of g with multiplicity q∗ satisfying mq + q − 1 = (m + 2 + 1)q∗ + 1. Thus,
(m+1)(q− q∗) = 2q∗+2, which means q ≥ q∗+1 ≥ m+1

2 . Similar as the cases
n ≥ 3, we get

T (r, f) ≤ N̄(r,
1
f

) + N̄(r,
1

f + 1
) + N̄(r,

1
f − 1

) + S(r, f)

≤ 2
m + 1

N(r,
1
f

) +
2

m + 5
N(r,

1
f + 1

) +
2

m + 5
N(r,

1
f − 1

) + S(r, f)

≤ 2
m + 1

T (r, f) +
4

m + 5
T (r, f) + S(r, f)

which is absurd since we assume m > n + 10.

Case (ii): F ≡ G.

We have

F1 ≡ G1 + c (c ∈ C).

If c 6= 0, then we have

(m + n + 1)T (r, f) = T (r, F1) + O(1)

≤ N̄(r,
1
F1

) + N̄(r,
1

F1 − c
) + N̄(r, F1) + S(r, f)

≤ N̄(r,
1
F1

) + N̄(r,
1

G1
) + N̄(r, F1) + S(r, f)

≤ (2n + 3)T (r, f) + S(r, f),

which means m− n− 2 < 0, a contradiction.
Therefore, c = 0, and by Lemma 2.4, we have f ≡ g. ¤

5. Proofs of Theorems 1.4 and 1.6

The proofs of Theorems 1.4 and 1.6 are similar to that of Theorem 1.2.
Noting that

N̄(3(r,
1

F − 1
) ≤ 1

2
N(r,

F

F ′
) ≤ 1

2
N(r,

F ′

F
) + S(r, f)

≤ 1
2
N̄(r, F ) +

1
2
N̄(r,

1
F

) + S(r, f)

≤ 1
2
(
N̄(r, f) + N̄(r,

1
f

) +
n∑

i=1

N(r,
1

f − ωi
) + N(r,

1
f ′

)
)

+ S(r, f)

≤ (2 +
n

2
)T (r, f) + S(r, f),
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and

N̄(2(r,
1

F − 1
) ≤ N(r,

F

F ′
) ≤ N(r,

F ′

F
) + S(r, f)

≤ N̄(r, F ) + N̄(r,
1
F

) + S(r, f)

≤ N̄(r, f) + N̄(r,
1
f

) +
n∑

i=1

N(r,
1

f − ωi
) + N(r,

1
f ′

) + S(r, f)

≤ (4 + n)T (r, f) + S(r, f),

we could obtain the conclusions of Theorems 1.4 and 1.6 analogous to Theo-
rem 1.2.

6. Proofs of Theorems 1.3, 1.5, and 1.7

Since the terms N(r, f) and N(r, g) equal to O(1) now, analogous to the
proofs of Theorems 1.2, 1.4 and 1.6, we could get the conclusions of Theorems
1.3, 1.5 and 1.7.

Concluding Remark. From the conclusion of Theorem 1.2, we could say that
the non-linear differential equations about f ’s

fm(fn − 1)f ′ − 1 = γ(z)

may have a sole meromorphic solution for at most one γ(z) ∈ Γ with the
assumptions that m > n + 10, n ≥ 2 and (m + 1, n) = 1, where γ(z) is a mero-
morphic function, and Γ is a family of meromorphic functions such that any
two elements γ1(z), γ2(z) ∈ Γ satisfy the condition that E3)(0, γ1) = E3)(0, γ2).
In particular, if Γ is a family of entire functions such that its elements have the
same property as above, then the non-linear differential equations may have
a sole entire solution for at most one γ(z) ∈ Γ provided that m > n + 5 by
the conclusion of Theorem 1.3. Similar discussions could be done about the
solvability of the non-linear differential equations above by the conclusions of
Theorems 1.4-1.7 and we omit the details here.
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