ON FARTHEST POINTS IN METRIC SPACES

  • Narang, T.D. (Department of Mathematics, Guru Nanak Dev University)
  • Published : 2002.05.01

Abstract

For A bounded subset G of a metric Space (X,d) and $\chi \in X$, let $f_{G}$ be the real-valued function on X defined by $f_{G}$($\chi$)=sup{$d (\chi, g)\in:G$}, and $F(G,\chi)$={$z \in X:sup_{g \in G}d(g,z)=sup_{g \in G}d(g,\chi)+d(\chi,z)$}. In this paper we discuss some properties of the map $f_G$ and of the set $ F(G, \chi)$ in convex metric spaces. A sufficient condition for an element of a convex metric space X to lie in $ F(G, \chi)$ is also given in this pope.

Keywords