• Title/Summary/Keyword: Fuel tank

Search Result 467, Processing Time 0.027 seconds

The Study of Comparison of Cooling System for H2 Discharge Station (수소충전용 직접 및 간접 냉각시스템 비교 평가 연구)

  • LEE, HYENCHAN;YI, JONGYEOL;BAE, CHANHYO;HEO, JEONGHO;JEON, JAEYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.163-169
    • /
    • 2019
  • This study is a research to compare efficiency of new cooling system (chiller, pre-cooler) to that of the conventional system at the hydrogen refueling station (HRS). This study includes contents for thermodynamic comparison of cooling system for HRS and comparison of pros and cons of its components. So It is to establish design concept of cooling system of HRS supplying with fuel cell electric vehicle (FCEV). HRS is charging high pressure H2 (700 bar) to FCEV. However cooling system is need to prevent temperature rise in tank. This cooling system consists of pre-cooler and chiller system.

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

Study on the Phase II Qualification Test for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 Phase II 인증시험에 대한 고찰)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1054-1060
    • /
    • 2013
  • Fuel tank of a rotorcraft has a great influence on the survivability of crews. For a long time, US army has tried to develop the proper material for fuel cell of a military rotorcraft. As a result, the design specification of fuel cell, MIL-T-27422A, was issued for the first time on 1961. Through a few revisions, it has been developed to ML-DTL-27422D in 2007. It should be assured that fuel cell satisfies the requirement defined in MIL-DTL-27422D. The qualification test of this specification is classified into Phase I test for material and Phase II for fuel cell itself. This paper studies test conditions and procedures of slosh & vibration, gunfire resistance and crash impact test. They are considered as the most important tests which have a high possibility of failure. The rational consideration of this paper can improve the ability for estimating not only the validity of test procedure and test condition but test result. Based on the rational consideration, it is expected that the ability of the systematic development can be improved.

Computational Study for the Performance of Fludic Device during LBLOCA using TRAC-M (최적계산코드를 이용한 대형 냉각재상실사고시 유량조절기 성능평가에 관한 연구)

  • Chon Woochong;Lee Jae Hoon;Lee Sang Jong
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The APR1400 is an Advanced Pressurized Water Reactor with 3983 MWt power, 2×4 loops, and direct vessel injection system. The Fluidic Device (FD) is adopted to regulate the safety injection flow rate in a Safety Injection Tank (SIT) of APR1400. The performance of a newly designed fluidic Device is evaluated by analyzing a Large Break Loss-of-Coolant Accident (LBLOCA) using TRAC-M/F90, version 3.782. The analysis results show that the TRAC-M code reasonably predicts the important phenomena of blowdown, refill and reflood phases of LBLOCA. The sensitivity studies about gas/water volume changes in a SIT and K factor changes in a SI system were also done to understand the important phenomena with a Fluidic Device in APR1400.

A Study on Durability Test of Check Valve for CNG Vehicles (천연가스 차량용 체크밸브의 내구성능에 관한 연구)

  • Kim, Chang-Gi;Lee, Sun-Youp;Cho, Gyu-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.15-20
    • /
    • 2009
  • The number of compressed natural gas (CNG) vehicles have increased gradually by virtue of korea government's urban air quality improvement policy since 1998. Although the use of CNG as transportation fuel gives environmental benefits, there is a possibility of huge accidents from unexpected fire. Therefore, needs for the guarantee of safety are indispensible for the reliable operation of CNG vehicles. A check valve is a safety device which prevents leakage of the pressurized fuel charged in a fuel tank. Durability of this component should be guaranteed in spite of repeated operation. This research has performed durability tests of a CNG check valve regarding the repeated usage, extreme chattering, and the effect of compressor oil.Although a check valve used for CNG vehicle satisfies validation requirements in the test results, it has been found that problem in the function of leakage prevention in a check valve could take place in the case of prolonged exposure to compressor oil.

  • PDF

Study on the Characterization of Oxidative Degradation of Automotive Gasoline (자동차용휘발유의 산화열화특성 규명 연구)

  • Min, Kyong-Il;Yim, Eui Soon;Jung, Chung-Sub;Kim, Jae-Kon;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.250-256
    • /
    • 2013
  • Gasoline generates organic acid and polymer (gum) by hydrocarbon oxidation depending on the storage environment such as temperature and exposure to sunlight, which can cause metal corrosion, rubber and resin degradation and vehicle malfunction caused by accumulation in fuel supply system. The gasoline which has not been used for a long time in bi-fuel (LPG-Gasoline) vehicle causes problems, and low octane number gasoline have evaporated into the field, but the exact cause has not been studied yet. In this study, we suggest a plan of quality management by investigating the gasoline oxidation behavior. In order to investigate the oxidation behavior of gasoline, changes of gasoline properties were analyzed at various storage conditions such as storage time, storage vessel type (vehicle fuel tank, PE vessel and Fe vessel) and storage circumstances (sunlight exposure and open system, etc.). Currently distributing gasoline and bioethanol blended fuel (blended 10%) were stored for 18 weeks in summer season. The sample stored in PE vessel was out of quality standard (octane number, vapor pressure, etc.) due to the evaporation of the high octane number and low boiling point components through the vessel cap and surface. Especially, the sunlight exposure sample stored in PE vessel showed rapid decrease of vapor pressure and increase of gum. Bioethanol blended fuel showed similar results as gasoline.

CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO (하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석)

  • Cho, SungHwan;Lee, JongHyeon;Kim, DaeYoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.327-336
    • /
    • 2020
  • The high-flux advanced neutron application reactor (HANARO) is a research reactor with thermal power of 30 MW applied in various research and development using neutrons generated from uranium fission chain reaction. A degasifier tank is installed in the ancillary facility of HANARO. This facility generates gas pollutants produced owing to internal environmental factors. The degasifier tank is designed to maintain the gas contaminants below acceptable levels and is monitored using an analyzer in the gas sampling panel. If condensate water is generated and flows into the analyzer of the gas sampling panel, corrosion occurs inside the analyzer's measurement chamber, which causes failure. Condensate water is generated because of the temperature difference between the degasifier tank and analyzer when the gas flows into the analyzer. A heating system is installed between the degasifier tank and gas sampling panel to suppress condensate water generation and effectively remove the condensate water inside the system. In this study, we investigated the efficiency of the heating system. In addition, the variations in the pipe temperature and the amount of average condensate water were modeled using a wall condensation model based on the changes in the fluid inlet temperature, outside air temperature, and heating cable-setting temperature.

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조뭍-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민;홍선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

An Experimental Study on the Emission Characteristics of VOCs Generation from Automotive Fuel Tank at Gasoline Reservoir (주유소에서 자동차 주유시 발생하는 VOCs 배출특성에 관한 조사연구)

  • 김기선;배성근;윤성렬;이원수;선우영;홍지형
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.91-92
    • /
    • 2003
  • 경제성장 및 산업의 고도화에 따른 자동차 보급의 증가, 유류 및 유기용제의 사용량 증가로 휘발성유기화합물질(Volatile Organic Compounds; 이하 VOCs)의 배출량이 증가하고 있다. 이러한 VOCs의 배출원중에 하나가 주유소에서 발생하는 VOCs이다(정일록 등, 1995). 주유소에서의 VOCs 배출원은 EPAAP-42의 경우 지하저장탱크 숨구멍을 통한 증발과 유조차에서 지하 저장탱크에 휘발유 등 석유 제품을 하역시 증발을 Stage I, 지하저장에서 자동차에 주유시 증발 및 주유시 흘림에 의한 VOCs 증발을 Stage II로 구분되어 있다. (중략)

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조물-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF