DOI QR코드

DOI QR Code

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid

스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구

  • Chang, Hui Il (Department of Electrical and Electronics Engineering, Gwangju University) ;
  • Thapa, Prakash (Department of Electronics Engineering, Mokpo National University)
  • Received : 2016.11.01
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

본 논문은 현재 진행 중인 대한민국 남부지역에 위치한 대학 내 스마트에너지캠퍼스 마이크로그리드에서 대학 내 빌딩에 설치될 수소전기분해 이용 연료전지 시스템 운용을 위한 선행 연구로써 고분자전해질막 전기분해(PEMWE)과 고분자전해질막 연료전지(PEMFC) 장치에서 동시에 온도변화 효과를 연구하고자 한다. 전반적으로 실험실에서 50W 고분자전해질막 연료전지(PEMFC)을 사용하여 수행하였다. 모니터링 프로세스는 무선 로라 노드와 게이트웨이 네트워크를 구성하여 실행하였다. 그리고 PEMWE와 PEMFC에 대한 수학적 모델링과 운전 알고리즘을 제안하였으며 제안한 모델에서 PEMWE는 낮은 발열 기준에서 효율이 더 높음을, 반면에 PEMFC는 높은 발열기준에서 효율이 더 높음을 을 알 수 있었다. 향후 대학 구내 빌딩에 설치될 실증시스템 성능을 높이기 위해 PEMWE와 PEMFC의 온도와 압력을 모니터링, 통신 및 제어 등 연구개발을 통하여 구현할 예정이다.

Keywords

References

  1. J. Peng and S.J. Lee, 'Numerical Simulation of Proton Exchange Membrane Fuel Cells at High Operating Temperature', Journal of Power Sources, Vol. 162, No. 2, pp. 1182 - 1191,2006. https://doi.org/10.1016/j.jpowsour.2006.08.001
  2. A Scheme on Energy Efficiency Through the Convergence of Micro-grid and Small Hydro Energy, Bo-Seon Kang, Keun-Ho Lee, KONS. v.6, no.1, pp.29-34, Feb. 2015.
  3. PEM Electrolysis for Hydrogen Production: Principles and Applications, Edited by Dmitri Bessarabov, Haijiang Wang, Hui Li,Nana, CRC Press, ISBN-13:978-1-4822-5232-3, Dec. 2015.
  4. The Fuel Cell An Ideal Chemical Engineering Undergraduate Experiment", Jung-Chou Lin, H. Russel Kunz, James M. Fenton, Suzanne S. Fenton, University of Connecticut
  5. http://www.greencarcongress.com/2005/03/hsub2sub_genera.html
  6. http://www.greencarcongress.com/2005/03/hsub2sub_genera.html
  7. http://samples.sainsburysebooks.co.uk/9780080455419_sample_795033.pdf
  8. Barbir, Frano. PEM fuel cells: theory and practice. Academic Press, 2013.
  9. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.6618&rep=rep1&type=pdf
  10. D. Giusto, A. Iera, G. Morabito and L. Atzori (Eds.), "The Internet of Things", Springer, ISBN: 978-1-4419- 1673-0, (2010).
  11. L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A survey", Computer Networks, 2010).
  12. Development of Remote Monitoring and Control Device of 50KW Photovoltaic System, Jeabum Park, Byungmok Kim, JIAN SHEN, Daeseok Rho, KCONS, v.2, no.3, pp.7-14, Sep. 2011.
  13. L. Xun, G. Qing-wu and Q. Hui, "The application of IOT in power systems", Power System Protection and Control, vol. 38, no. 22, (2010), pp. 232-236
  14. S. Shimpalee, S. Dutta "Distribution in PEM fuel cells" Numer Heat Trans, 38 (2000), pp. 111-28 https://doi.org/10.1080/10407780050135360
  15. J.G. Pharoah, O.S. Burheim "On the temperature distribution in polymer electrolyte fuel cells" J Power Sources, 195 (16) (2010), pp. 5235-5245 https://doi.org/10.1016/j.jpowsour.2010.03.024
  16. Ticianelli, E.A.; Derouin, C.R.; Srinivasan, S.J. Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells. J. Electroanal. Chem. 1988, 251, 275-95. https://doi.org/10.1016/0022-0728(88)85190-8
  17. http://www.rcrwireless.com/20160119/internet-ofthings/iot-gateways-lorawan-tag4
  18. Um, S.K.; Wang, C.Y.; Chen, K.S. Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2000, 147, 4485-4493. https://doi.org/10.1149/1.1394090