DOI QR코드

DOI QR Code

CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO

하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석

  • Received : 2020.04.16
  • Accepted : 2020.08.14
  • Published : 2020.08.30

Abstract

The high-flux advanced neutron application reactor (HANARO) is a research reactor with thermal power of 30 MW applied in various research and development using neutrons generated from uranium fission chain reaction. A degasifier tank is installed in the ancillary facility of HANARO. This facility generates gas pollutants produced owing to internal environmental factors. The degasifier tank is designed to maintain the gas contaminants below acceptable levels and is monitored using an analyzer in the gas sampling panel. If condensate water is generated and flows into the analyzer of the gas sampling panel, corrosion occurs inside the analyzer's measurement chamber, which causes failure. Condensate water is generated because of the temperature difference between the degasifier tank and analyzer when the gas flows into the analyzer. A heating system is installed between the degasifier tank and gas sampling panel to suppress condensate water generation and effectively remove the condensate water inside the system. In this study, we investigated the efficiency of the heating system. In addition, the variations in the pipe temperature and the amount of average condensate water were modeled using a wall condensation model based on the changes in the fluid inlet temperature, outside air temperature, and heating cable-setting temperature.

HANARO (High-flux Advanced Neutron Application Reactor)는 우라늄의 핵분열 연쇄반응에서 생성된 중성자를 이용하여 다양한 연구개발을 수행하는 열출력 30 MW 규모의 연구용 원자로이다. 탈기탱크는 HANARO의 부속시설에 설치되어 있다. 탈기탱크는 내부환경요인으로 인해 기체오염물질을 발생시킨다. 탈기탱크는 기체오염물질을 허용 가능한 수준 이하로 유지하기위해 필요하며 기체시료채취판넬의 분석기에 의해 모니터링 된다. 응축수가 발생하여 기체시료채취판넬의 분석기 내부로 유입된다면, 분석기의 측정 챔버 내부에 부식이 발생하여 고장을 야기한다. 응축수의 생성 원인은 탈기탱크에 존재하는 기체가 분석기로 유입되는 과정에서 탈기탱크와 분석기사이 온도 차이다. 응축수 생성을 억제하고 계통 내부에 생성된 응축수를 효율적으로 제거하기 위해 탈기탱크와 기체시료채취판넬 사이에 히팅시스템이 설치되었다. 이 연구에서 우리는 히팅시스템의 효율성을 알고자 한다. 또한 Wall Condensation Model을 이용하여 유체 입구온도, 외부온도 및 히팅 케이블 설정온도 변화에 따른 파이프 온도와 평균응축량의 변화를 모델링하였다.

Keywords

References

  1. Korea Atomic Energy Research Institute, "HANARO SAR", KAERI Technical Report, KAERI/TR-710/1996 (2020).
  2. Korea Atomic Energy Research Institute, "HANARO SAR Chapter 11.7 FTL", KAERI Technical Report, KAERI/TR-3898/2009 (2009).
  3. Korea Atomic Energy Research Institute, "FTL: The High Temperature Function Test Procedures before Loading the Nuclear Fuel (Comprehensive Test Procedures of Letdown, Makeup and Purification System) Rev. 1", KAERI Report, HAN-FL-S-062-DO-K104 (2008).
  4. S.H. Cho, M.S. Kim, H.Y. Choi, and W.H. In, "Research on How to Remove Efficiently the condensate water of Sampling System", Proc. of the Korean Nuclear Society 2015 Autumn Meeting, October 29-30, P08F01, Gyeongju (2015).
  5. Korea Atomic Energy Research Institute, "FTL: The Room Temperature Function Test Procedures (Sampling System Test Procedures)", KAERI Report, HANFL- S-062-DO-K008 (2007).
  6. G. Zschaeck, T. Frank, and A.D. Burns, "CFD modelling and validation of wall condensation in the presence of non-condensable gases", Nucl. Eng. Des., 279, 137-146 (2014). https://doi.org/10.1016/j.nucengdes.2014.03.007
  7. M. Lejon, "Wall Condensation Modelling in Convective Flow", Kungliga Tekniska Hogskolan School of Industrial Engineering and Management, Master of Science Thesis EGI-2013-092MSC EKV970, Stockholm (2013).
  8. ANSYS CFX-Solver Theory Guide, R17, 72-75, 171-176, 183-191, ANSYS, Inc., Canonsburg, PA., Jan. 2016.
  9. CFD Online, Mar. 28, 2014. "Dimensionless wall distance (y plus)", Accessed Jul. 27 2020. Available from: https://www.cfd-online.com/Wiki/Dimensionless_wall_ distance_(y_plus).
  10. Korea Atomic Energy Research Institute, "LMP Ion Exchanger etc. equipment capacity statement - purification filter, resin filter, mixed demineralizer, degasifier tank, chemical additional tank Rev. 3", KAERI Report, HAN-FL-E-240-DC-H003 (2004).
  11. S.Z. Kuhn, V.E. Schrock, and P.F. Peterson, "An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube", Nucl. Eng. Des., 177(1-3), 53-69 (1997). https://doi.org/10.1016/S0029-5493(97)00185-4