• Title/Summary/Keyword: Frequency locking

Search Result 173, Processing Time 0.027 seconds

Additional Thermometer Code Locking Technique for Minimizing Quantization Error in Low Area Digital Controlled Oscillators (저면적 디지털 제어 발진기의 양자화 에러 최소화를 위한 추가 서모미터 코드 잠금 기법)

  • Byeongseok Kang;Young-Sik Kim;Shinwoong Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.573-578
    • /
    • 2023
  • This paper introduces a new locking technique applicable to high-performance digital Phase-Locked Loops (DPLL). The study employs additional thermometer codes to reduce quantization errors in LC-based Digital Controlled Oscillators (DCO). Despite not implementing the entire DCO codes in thermometer mode, this method effectively reduces quantization errors through enhanced linearity. In the initial locking phase, binary codes are used, and upon completion of locking, the system transitions to thermometer codes, achieving high frequency linearity and reduced jitter characteristics. This approach significantly reduces the number of switches required and minimizes the oscillator's area, especially in applications requiring low DCO gain (Kdco), compared to the traditional method that uses only thermometer codes. Furthermore, the jitter performance is maintained at a level equivalent to that of the thermometer-only approach. The efficacy of this technique has been validated through modeling and design at the RTL level using SystemVerilog and Verilog HDL.

Characteristics of Injection-Locked High Power Diode Laser (고출력 다이오드 레이저의 주입-잠금 과정 연구)

  • 문한섭;김중복;이호성;양성훈;김점술
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.222-227
    • /
    • 1995
  • A single mode, 100-mW diode laser was injection-locked by the master laser which was spectrally narrowed with Littman-type grating feedback. In the incomplete-injection-locking, we observed that two frequencies were simultaneously generated from the slave laser. The power ratio and frequency shift of two frequency components were proportional to the square of injected laser intensity. When the ratio of the injection intensity to the slave laser intensity was about $10^{-3}$, the injection-locking bandwidth was to be about 1.4 GHz. The bandwidth proportionally increased to the square root of the injection intensity, which was in good agreement with the theoretical predictions. The Iinewidth of the locked-laser was about 2.5 MHz, which was five times as narrow as that of free-running operation. ation.

  • PDF

Design of a Frequency Locked Loop Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • In this paper, I propose the full CMOS FLL(frequency locked loop) circuit. The proposed FLL circuit has a simple structure which contains a FVC(frequency-to-voltage converter), an operational amplifier and a VCO(voltage controlled oscillator). The operation of FLL circuit is based on frequency comparison by the two FVC circuit blocks. The locking time of FLL is short compared to PLL(phase locked loop) circuit because the output signal of FLL is synchronized only in frequency. The circuit is designed by 0.35${\mu}m$ process and simulation carried out with HSPICE. Simulation results are shown to illustrate the performance of the proposed FLL circuit.

5.8 ㎓ Band Frequency Synthesizer using Harmonic Oscillation (하모닉 발진을 이용한 5.8 ㎓ 대역 주파수 합성기)

  • 최종원;신금식;이문규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.421-427
    • /
    • 2004
  • A low cost solution employing harmonic oscillation to the frequency synthesizer at 5.8 ㎓ is proposed. The proposed frequency synthesizer is composed of 2.9 ㎓ PLL chip, 2.9 ㎓ oscillator, and 5.8 ㎓ buffer amplifier The measured data shows a frequency Outing range of 290 ㎒, ranging from 5.65 to 5.94 ㎓ about 0.5 ㏈m of output power, and a phase noise of -107.67 ㏈c/㎐ at the 100 ㎑ offset frequency. All spurious signals including fundamental oscillation power(2.9 ㎓) are suppressed at least 15 ㏈c than the desired second harmonic signal.

A Quadrature VCO Exploiting Direct Back-Gate Second Harmonic Coupling

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.134-137
    • /
    • 2008
  • This paper proposes a novel quadrature VCO(QVCO) based on direct back-gate second harmonic coupling. The QVCO directly couples the current sources of the conventional LC VCOs through the back-gate instead of front-gate to generate quadrature signals. By the second harmonic injection locking, the two LC VCOs can generate quadrature signals without using on-chip transformer, or stability problem that is inherent in the direct front-gate second harmonic coupling. The proposed QVCO is implemented in $0.18{\mu}m$ CMOS technology operating at 2 GHz with 5.0 mA core current consumption from 1.8 V power supply. The measured phase noise of the proposed QVCO is - 63 dBc/Hz at 10 kHz offset, -95 dBc/Hz at 100 kHz offset, and -116 dBc/Hz at 1 MHz offset from the 2 GHz output frequency, respectively. The calculated figure of merit(FOM) is about -174 dBc/Hz at 1 MHz offset. The measured image band rejection is 46 dB which corresponds to the phase error of $0.6^{\circ}$.

Construction of High-Speed Wavelength Swept Mode-Locked Laser Based on Oscillation Characteristics of Fiber Fabry-Perot Tunable Filter (광섬유 패브리-페로 파장가변 필터의 공진특성에 기반한 고속 파장가변 모드잠김 레이저의 제작)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1393-1397
    • /
    • 2009
  • A high-speed wavelength swept laser, which is based on oscillation characteristics of a fiber Fabry-Perot tunable filter, is described. The laser is constructed by using a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, and 3.348 km fiber ring cavity. The wavelength sweeps are repeatatively generated with the repetition period of 61 kHz which is the first parallel oscillation frequency of the Fabry-Perot tunable filter for the low power consumption. Mode-locking is implemented by 3.348 km fiber ring cavity for matching the fundamental of cavity roundtrip time to the sweep period. The wavelength tuning range of the laser is 87 nm(FWHM) and the average output power is 1.284 mW.

Fabry-Perot Modeling of Injection-Locking of the Broad-Area Diode Laser (광폭 다이오우드 레이저의 주입-잠금에 대한 Fabry-Perot 모델)

  • 권진혁;박기수;남병호
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.106-112
    • /
    • 1994
  • The injection-locking of the broad-area diode laser was analysed by using the Fabry-Perot model. The far-field pattern of the output beam was able to be treated by superposing the individual beams emitted from the front facet due to the multiple reflections between the front and rear facets. and the exact near and far field patterns were obtained. The angle-steering effect according to change of the incident frequency was changed was calculated and found to be 0.022 degree/GHz with a bandwidth of 120 GHz.20 GHz.

  • PDF

Register Controlled Delay-locked Loop using Delay Monitor Scheme (Delay Monitor Scheme을 사용한 Register Controlled Delay-locked Loop)

  • 이광희;노주영;손상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.144-149
    • /
    • 2004
  • Register Controlled DLL with fast locking and low-power consumption, is described in this paper. Delay monitor scheme is proposed to achieve the fast locking and inverter is inserted in front of delay line to reduce the power consumption, also. Proposed DLL was fabricated in a 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS technology. The proposed delay monitor scheme enables the DLL to lock to the external clock within 4 cycles. The power consumption is 36㎽ with 3V supply voltage at 34MHz clock frequency.

All-optical Flip-flop based on Optical Beating and Bistability in an Injection-locked Fabry-Perot Laser Diode

  • Kim, Junsu;Lee, Hyuek Jae;Park, Chang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.698-703
    • /
    • 2016
  • We report a new all-optical flip-flop (AOFF) with a quite simple structure, using optical beating in an injection-locked Fabry-Perot laser diode (FP-LD) with optical bistability. While conventional AOFF methods using an injection-locked FP-LD require additional devices such as secondary FP-LDs or polarization controllers for reset operation, the proposed method can be implemented using only a single commercially available FP-LD with set and reset signals. The optical beating induces intensity fluctuations inside the FP-LD, and releases the locking state to the reset state. Even though we demonstrated the AOFF at 100 Mbit/s, we expect that its operation rate could extend to 10 Gbit/s, according to the limit of the FP-LD's frequency response.

Ultralow Intensity Noise Pulse Train from an All-fiber Nonlinear Amplifying Loop Mirror-based Femtosecond Laser

  • Dohyeon Kwon;Dohyun Kim
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.708-713
    • /
    • 2023
  • A robust all-fiber nonlinear amplifying loop-mirror-based mode-locked femtosecond laser is demonstrated. Power-dependent nonlinear phase shift in a Sagnac loop enables stable and power-efficient mode-locking working as an artificial saturable absorber. The pump power is adjusted to achieve the lowest intensity noise for stable long-term operation. The minimum pump power for mode-locking is 180 mW, and the optimal pump power is 300 mW. The lowest integrated root-mean-square relative intensity noise of a free-running mode-locked laser is 0.009% [integration bandwidth: 1 Hz-10 MHz]. The long-term repetition-rate instability of a free-running mode-locked laser is 10-7 over 1,000 s averaging time. The repetition-rate phase noise scaled at 10-GHz carrier is -122 dBc/Hz at 10 kHz Fourier frequency. The demonstrated method can be applied as a seed source in high-precision real-time mid-infrared molecular spectroscopy.