• Title/Summary/Keyword: Fractional order

Search Result 448, Processing Time 0.032 seconds

Discrimination and bifurcation analysis of tumor immune interaction in fractional form

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Rashid, Yahya;Ishaque, Waqas;Mahmoud, S.R.;Din, Qamar;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.359-371
    • /
    • 2021
  • A tumor immune interaction is a main topic of interest in the last couple of decades because majority of human population suffered by tumor, formed by the abnormal growth of cells and is continuously interacted with the immune system. Because of its wide range of applications, many researchers have modeled this tumor immune interaction in the form of ordinary, delay and fractional order differential equations as the majority of biological models have a long range temporal memory. So in the present work, tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and interleukin-2 (IL-2) are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Furthermore, existence and local stability of fixed points are investigated for discrete model. Moreover, it is proved that two types of bifurcations such as Neimark-Sacker and flip bifurcations are studied. Finally, numerical examples are presented to support our analytical results.

유리차수 적분을 이용한 전동기 속도제어 (Motor Speed Control Using the Fractional Order Integral)

  • 전용호;강정욱
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.503-510
    • /
    • 2021
  • 본 연구는 유리 차수 미분의 수학적인 방법을 시스템의 응답을 제어하는 제어기에 적용하고자 한다. 따라서 제어기로 구성하기 위해서는 유리수 지수에 대한 적분기를 이산시간으로 변환하여 설계한다. IP 제어기는 오차에 대한 적분제어기를 구성하고 비례제어기는 시스템 출력만 적용하는 구조이다. 유리 차수 적분기를 IP 제어기의 적분제어기에 활용함으로 제어기를 설계한다. 먼저 PI 제어기와 IP 제어기의 성능을 비교하고, 설계된 제어기를 전동기의 속도 제어에 적용한다. 그 결과 전동기의 출력상태인 속도가 균일하며 정밀한 제어 성능을 얻을 수 있었다. 정상상태의 속도오차가 0.1 [%] 이내 이고, 오버슈트가 없는 정밀하며 균일한 속도 제어 성능을 가짐을 확인할 수 있었다.

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권3호
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.297-313
    • /
    • 2022
  • The objective of this paper is to study the effect of frequency in a two-dimensional orthotropic thermoelastic rotating solid with fractional order heat transfer in generalized thermoelasticity with two-temperature due to inclined load. As an application the bounding surface is subjected to uniformly and linearly distributed loads (mechanical and thermal source). The problem is solved with the help of Fourier transform. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components, conductive temperature and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The results are depicted graphically to show the effect of frequency on various components. Some particular cases are also discussed in the present research.

SOLUTIONS OF FRACTIONAL ORDER TIME-VARYING LINEAR DYNAMICAL SYSTEMS USING THE RESIDUAL POWER SERIES METHOD

  • Mahmut MODANLI;Sadeq Taha Abdulazeez;Habibe GOKSU
    • 호남수학학술지
    • /
    • 제45권4호
    • /
    • pp.619-628
    • /
    • 2023
  • In this paper, the fractional order time-varying linear dynamical systems are investigated by using a residual power series method. A residual power series method (RPSM) is constructed for this problem. The exact solution is obtained by the Laplace transform method and the analytical solution is calculated via the residual power series method (RPSM). As an application, some examples are tested to show the accuracy and efficacy of the proposed methods. The obtained result showed that the proposed methods are effective and accurate for this type of problem.

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • 대한수학회지
    • /
    • 제38권6호
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

EFFECT OF PERTURBATION IN THE SOLUTION OF FRACTIONAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • ABDO, MOHAMMED. S.;PANCHAL, SATISH. K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권1호
    • /
    • pp.63-74
    • /
    • 2018
  • In this paper, we study the initial value problem for neutral functional differential equations involving Caputo fractional derivative of order ${\alpha}{\in}(0,1)$ with infinite delay. Some sufficient conditions for the uniqueness and continuous dependence of solutions are established by virtue of fractional calculus and Banach fixed point theorem. Some results obtained showed that the solution was closely related to the conditions of delays and minor changes in the problem. An example is provided to illustrate the main results.

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

  • Zhang, H.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and $Gr\ddot{u}nwald$-Letnikov(G-L) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

  • PDF