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ABSTRACT. The problem of generalized thermoelasticity of two-temperature for finite piezo-
electric rod will be modified by applying three different types of heating applications namely,
thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived
with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional
order derivative. The inverse Laplace transforms are numerically evaluated with the help of a
method formulated on Fourier series expansion. The results obtained for the conductive tem-
perature, the dynamical temperature, the displacement, the stress and the strain distributions
have represented graphically using MATLAB.

1. INTRODUCTION

Many theories have been discovered and tried to eliminate the contradiction of the infinite
speed of heat propagation in the classical theory of thermoelasticity. But two among them
are very famous. That are Lord-Shulman theory [1] and Green-Lindsay theory [2]. Many
of the authors gave their contribution in the theory of generalized Thermopiezoelasticity for
two-temperature as seen in the work of Youssef et.al. [3], Tianhu et.al. [4], Nowacki [5],
Abouelregal [6] and Chandrasekharaiah [7].

In last few decades there had been remarkable developments in the field of Fractional Calcu-
lus as shown in the many researchers work like Podlubny [8], Miller et.al. [9], Yang et.al. [10]
and Losada et.al. [11]. The use of derivative of fractional order has also spread into the work of
many researchers as Raslan [12], Sherief et.al. [13, 14, 15], Youssef et.al. [16, 17], and Ezzat
et.al. [18]. Honig et.al. [19], discussed the numerical inversion of Laplace transform. Some
contributions of this theory are in[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

This paper is the modification of the work of E. Bassiouny and H. M. Youssef [35]. In this
paper, a new thermoelastic model has been prepared with Caputo-Fabrizio fractional derivative
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of order 0 ≤ α ≤ 1 and the results are derived in Laplace transform domain defined in [36] and
using the direct approach. The comparative study of Thermopiezoelasticity of finite rod with
three different types of thermal loading has been done and the conductive temperature, the dy-
namical temperature, the stress, the strain and the displacement functions are to be determined.
Numerical results are illustrated graphically using MATLAB software.
Nomenclature:

λ, µ Lame’s Constants
ρ Density
a Two-temperature parameter
CE Specific heat at constant strain
T Absolute temperature
T0 Reference temperature
t Time
t0 Ramping time parameter
ui Components of displacement vector
Ω The angular frequency of thermal vibration
δij Kronecker delta function
αT Coefficient of linear thermal expansion
ξ The entropy density
φ The conductive temperature
qi The components of the heat flux vector
eij Strain tensor component
σij Stress tensor component
τ0 One relaxation time parameter
α Fractional order operator
γ (3λ+2µ)αT
ω ac2

0η
2, Dimensionless two-temperature parameter

c
ρCE
T0

θ (T − T0), The dynamical temperature increment such that,
|T − T0|
T0

<< 1

η
ρCE
k

, The thermal viscosity

β
γT0

λ+ 2µ
, Dimensionless thermoelastic coupling constant

c0

√
λ+ 2µ

ρ
, Longitudinal wave speed

ε
γ

ρCE
, Dimensionless mechanical coupling constant

D constant, the component of electric displacement
F0 constant, the strength of shock on the boundary



FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD 119

2. ONE-DIMENSIONAL FORMULATION OF THE PROBLEM

Consider a piezoelectric rod of finite length h. At initial stage the rod is at rest. The one end of
the rod is being heated and other is fixed at initial temperature.
Here, the displacement component is depends only on x co-ordinate. Thus, we have,

ux = u(x, t), uy = uz = 0

The initial conditions are assumed as follows:

u(x, 0) = 0, 0 ≤ x ≤ h
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ h

σ(x, 0) = 0, 0 ≤ x ≤ h

φ(x, 0) = φ̇(x, 0) = 0, 0 ≤ x ≤ h
Suppose, F (t) is a heating function which is being applied to one end of the rod and as the rod
is traction free, the boundary conditions are as follows:

φ0(0, t) = F (t) (2.1)

e(0, t) = e(h, t) = 0, σ(0, t) = 0 (2.2)

For this problem we will consider the following basic equations:

(λ+ 2µ)
∂2u

∂x2
− γ ∂θ

∂x
= ρ

∂2u

∂t2
(2.3)

σ = (λ+ 2µ)
∂u

∂x
− γθ − hD (2.4)

k
∂2φ

∂x2
=

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
[ρCEθ + γT0e] (2.5)

φ− T = a
∂2φ

∂x2
(2.6)

e =
∂u

∂x
(2.7)

E = −∂v
∂x

(2.8)

∂D

∂x
= 0 (2.9)

For our convenience, we consider the following non-dimensional variables,

u′ = c0ηu, φ′ =
φ− T0

T0
, τ ′ = c2

0ητ, σ′ =
σ

λ+ 2µ
, t′ = c2

0ηt, θ′ =
T − T0

T0
,
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D′ =
hD

λ+ 2µ
, η =

ρCE
k

, c2
0 =

λ+ 2µ

ρ
, t′0 = c2

0ηt0, x′ = c0ηx

Thus, the equations from Eq.(2.3)–Eq.(2.9)(dropping the primes) takes the form,

∂2e

∂x2
− β ∂

2θ

∂x2
=
∂2e

∂t2
(2.10)

σ = e− βθ −D (2.11)

∂2φ

∂x2
=

(
∂

∂t
+ τ0

∂α+1

∂tα+1

)
(θ + εe) (2.12)

θ = φ− ω∂
2φ

∂x2
(2.13)

3. SOLUTION IN THE LAPLACE TRANSFORM DOMAIN

The Laplace transform defined as follows:

L[f(t)] = f̄(s) =

∫ ∞
0

e−stf(t)dt (3.1)

The Caputo-Fabrizio fractional order derivative is defined in [36] as follows:

aD
(α)
t f(t) =

M(α)

1− α

∫ t

a
f ′(τ) exp

[
−α(t− τ)

1− α

]
dτ (3.2)

where, M(α) is the normalization function such that,
M(0) = M(1) = 0, 0 ≤ α ≤ 1, −∞ < a < t, f ∈ H1(a, b), a < b

We suppose that the function M(α) = 1 and substituting a = 0 in the definition defined in
Eq.(3.2), we obtain the Laplace transform of Caputo-Fabrizio fractional derivative in s variable
as follows:

L[0D
(α)
t f(t)] =

1

1− α
∫∞

0 e−st
∫ t

0 f
′(τ) exp

[
−α(t− τ)

1− α

]
dτdt

this implies,

L[0D
(α)
t f(t)](s) =

sL[f(t)]− f(0)

s+ α(1− s)
, 0 ≤ α ≤ 1

Similarly,

L[0D
(α+1)
t f(t)](s) =

s2L[f(t)]− sf(0)− f ′(0)

s+ α(1− s)
, 0 ≤ α ≤ 1 (3.3)

Taking Laplace transform of Eqs.(2.10)–(2.13) using the Eqs.(3.1) and (3.3), we get,

d2ē

dx2
− β d

2θ̄

dx2
= s2ē (3.4)
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σ̄ = ē− βθ̄ − D

s
(3.5)

d2φ̄

dx2
=

[
s+

τ0s
2

s+ α(1− s)

]
θ̄ + ε

[
s+

τ0s
2

s+ α(1− s)

]
ē (3.6)

θ̄ = φ̄− ωd
2φ

dx2
(3.7)

The boundary conditions (2.1)–(2.2) takes the form,

φ̄(0, s) = F̄ (s), φ̄(h, s) = 0 (3.8)

ē(0, s) = ē(h, s) = 0, σ̄(0, s) = 0 (3.9)

Now by combining Eqs.(3.6)–(3.7), we obtain,

d2φ̄

dx2
= Lφ̄+ Lεē (3.10)

where,

L =
(1 + τ0)s2 + αs(1− s)

(1 + ωs)(s+ α(1− s)) + ωτ0s2

Putting the value from Eq.(3.10) into Eq.(3.7), we obtain,

θ̄ = (1− ωL)φ̄− ωLεē (3.11)

Differentiating Eq.(3.11) twice w.r.t. x, we obtain,

d2θ̄

dx2
= (1− ωL)

d2φ̄

dx2
− ωLε d

2ē

dx2
(3.12)

Substituting this value from Eq.(3.12) into Eq.(3.4) and using Eq.(3.10), we obtain,

d2ē

dx2
= Mφ̄+Nē (3.13)

where,

M =
βL(1− ωL)

1 + βωLε
, N =

s2 + βLε(1− ωL)

1 + βωLε
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4. DIRECT APPROACH

Eliminating ē between Eqs.(3.10) and (3.13), we get,[
d4

dx4
− (L+N)

d2

dx2
+ (LN − εLM)

]
φ̄ = 0 (4.1)

The solution of Eq.(4.1) can be written as follows:

φ̄(x, s) =
2∑

k=1

(Ake
−xPk +Bke

xPk) (4.2)

Similarly, eliminating φ̄ between Eqs.(3.10) and (3.13), we get,[
d4

dx4
− (L+N)

d2

dx2
+ (LN − εLM)

]
ē = 0 (4.3)

and the solution of Eq.(4.3) takes the form as,

ē(x, s) =

2∑
k=1

(Cke
−xPk +Dke

xPk) (4.4)

where, Ak, Bk, Ck and Dk, for k = 1, 2 are all parameters depending on s.
By applying boundary conditions defined in Eq.(3.8) and Eq.(3.9) on Eqs.(4.2) and (4.4), we
can determined the parameters as follows:

A1 =
φ0(L− P 2

2 )e2hP1

2(P 2
1 − P 2

2 )sin h(hP1)
, B1 =

φ0(P 2
2 − L)

2(P 2
1 − P 2

2 )sin h(hP1)
(4.5)

A2 =
φ0(P 2

1 − L)e2hP2

2(P 2
1 − P 2

2 )sin h(hP2)
, B2 =

φ0(L− P 2
1 )

2(P 2
1 − P 2

2 )sin h(hP2)
(4.6)

from these relations we can write,

Ck =
(P 2

k − L)Ak
εL

, Dk =
(P 2

k − L)Bk
εL

, k = 1, 2 (4.7)

Here ±P1,±P2 are zeros of characteristic equation,

P 4 − (L+N)P 2 + LN − εLM = 0

and which satisfy the relations,
P1 + P2 = L+N

P1 · P2 = LN − εLM
Substituting the values from Eqs.(4.5)–(4.7) in Eq.(4.2) and Eq.(4.4), we obtain the conductive
heat function and strain function as follows:

φ̄(x, s) = φ1sin h[(h− x)P1] + φ2sin h[(h− x)P2] (4.8)

where
φ1 = 2A1e

−2hP1 and φ2 = 2A2e
−2hP2 (4.9)



FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD 123

and
ē(x, s) = e1sin h[(h− x)P1] + e2sin h[(h− x)P2] (4.10)

where
e1 = 2C1e

−2hP1 and e2 = 2C2e
−2hP2 (4.11)

Substituting Eqs.(4.8) and (4.10) in Eq.(3.11), we obtain the thermodynamical heat function as
follows:

θ̄(x, s) = θ1sin h[(h− x)P1] + θ2sin h[(h− x)P2] (4.12)
where

θ1 = (1− ωL)φ1 − ωεLe1 and θ2 = (1− ωL)φ2 − ωεLe2 (4.13)
Substituting Eqs.(4.10) and (4.12) in Eq.(3.5), we obtain the stress function as follows:

σ̄(x, s) = σ1sin h[(h− x)P1] + σ2sin h[(h− x)P2]− D

s
(4.14)

where
σ1 = e1 − βθ1 and σ2 = e2 − βθ2 (4.15)

Now from Eq.(2.8) and Eq.(4.12) we can write the expression in the Laplace transform domain
as,

∂ū

∂x
= e1sin h[(h− x)P1] + e2sin h[(h− x)P2] (4.16)

Thus we have,
ū = u1cosh[(h− x)P1] + u2cosh[(h− x)P2] (4.17)

where
u1 = − e1

P1
and u2 = − e2

P2
(4.18)

which completes the solution.

5. APPLICATION OF BOUNDARY CONDITIONS

Consider a finite rod 0 ≤ x ≤ h at a uniform temperature T0.

5.1. Thermal Shock. :
Here, we have applied the thermal shock to the boundary x = 0, given by

F (0, t) = F0H(t) (5.1)

where,

H(t) = { 1 , t ≥ 0
0 , t < 0 ,

is a Heaviside unit step function.
Taking Laplace transform of Eq.(5.1), we get,

φ0 = F̄ (s) =
F0

s
(5.2)

After substituting value from Eq.(5.2) into Eqs.(4.8)–(4.18), we get the complete solution.
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5.2. Ramp-Type Heating. :
Here, we have applied the heating to the boundary x = 0, given by

F (0, t) = {
0 , t ≤ 0
F0
t0
t , 0 < t ≤ t0

F0 , t > t0

(5.3)

where, t0 is the ramp-type parameter.
Taking Laplace transform of Eq.(5.3), we get,

φ0 = F̄ (s) =
F0(1− e−st0)

t0s2
(5.4)

After substituting value from Eq.(5.4) into Eqs.(4.8)–(4.18), we get the complete solution.

5.3. Harmonically Varying Temperature. :
Here, we have applied the heating to the boundary x = 0, given by

F (0, t) = F0e
i Ω t (5.5)

where, i =
√
−1.

Taking the Laplace transform of Eq.(5.5), we obtain,

φ0 = F̄ (s) =
F0

s− i Ω
(5.6)

After substituting value from Eq.(5.6) into Eqs.(4.8)–(4.18), we get the complete solution.

6. NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

Let f̄(r, z, s) be the Laplace transform of f(r, z, t). The inverse Laplace transform (Honig and
Hirdes,1984 [19]) is defined by,

f(r, z, t) =
ebt

2π

∫∞
−∞ e

itvf̄(b+ iv)dv

where, b is a positive number such that b > Re[ singularities of f̄(r, z, s) ]
Here, the function f(r, z, t) is approximated by,

f(r, z, t) ≈ 1

2
a0 +

∑N
k=1 ak ≈ fN (r, z, t), for 0 ≤ t ≤ 2l

where,

ak =
ebt

l
Re

 eikπtl f̄

(
b+

ikπ

l

)
7. NUMERICAL VALUES OF CONSTANTS

For the given problem we have taken the following values of numerical constants [35]:
ε = 0.414774, β = 0.00254040, α = 0.50, τ0 = 0.02,
D = 10−7, F0 = 1.0, ω = 0.1, h = 10, Ω = 10−5.
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Figure 1: The conductive temperature for
thermal shock heating
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Figure 2: The thermodynamic heat distribu-
tion for thermal shock heating

8. GRAPHICAL INTERPRETATION

In this paper we have used the value t = 0.25 for calculating the numerical values of all field
functions each for three different type of heating application and plotted the obtained results
using MATLAB.

Figures 1–5 show the graphs of field functions with thermal shock for different values of
ω = 0.0, 0.1.

Figure 1 shows the fractional change in conductive temperature for fixed value of α = 0.50.
The function φ decreases as the value of ω increases from 0.0 to 0.1 as well as for the increase
in value of x. It vanishes for large value of x.

Figure 2 shows the fractional change in thermodynamic temperature for fixed value of α =
0.50. The function θ decreases for increase in value of x and it vanishes for large value of x.
Also it decreases when ω increases.

Figure 3 represents the displacement distribution for fixed fractional parameter α = 0.50.
The function u decreases gradually when x is increasing. Also as ω increases u decreases.

Figure 4 represents the stress distribution for fixed value of α = 0.50. The absolute value of
σxx decreases for ω = 0.0 and ω = 0.1 and vanishes for large value of x. Also as ω increases
the absolute value of σxx decreases.

Figure 5 shows the strain distribution for fixed value of α = 0.50. Here, when ω = 0.0 the
absolute value of function e takes maximum value 3.2 × 10−3. It decreases as the value of ω
increases. Also as x increases value of e gradually decreases and vanishes for large values of
x.



126 K. R. GAIKWAD AND V. G. BHANDWALKAR

0 1 2 3 4 5 6 7 8 9 10
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

x

u

 

 

ω=0.0

ω=0.1

Figure 3: The displacement distribution for
thermal shock heating
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Figure 4: The stress distribution for thermal
shock heating

0 1 2 3 4 5 6 7 8 9 10
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

x

e

 

 

ω=0.0

ω=0.1

Figure 5: The strain distribution for thermal
shock heating
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Figure 6: The conductive heat distribution
for ramp-type heating

Figures 6–10 show the graphs of field functions with ramp-type heating for t0 = 0.1, 0.2, 0.3
Figure 6 represents the fractional change in φ for fixed value of α = 0.50. Here, φ decreases

as we go on increasing the value of t0. The function φ decreases in each of three cases and
vanishes for large value of x.
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Figure 7: The thermodynamical heat distri-
bution for ramp-type heating
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Figure 8: The displacement distribution for
ramp-type heating
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Figure 9: The stress distribution for ramp-
type heating

0 1 2 3 4 5 6 7 8 9 10
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

x

e

 

 

t
0
=0.1

t
0
=0.2

t
0
=0.3

Figure 10: The strain distribution for ramp-
type heating

Figure 7 represents the fractional change in θ for fixed value of α = 0.50. Here θ decreases
when t0 is increasing. The function θ also decreases as x is goes on increasing and vanishes
for large x.

Figure 8 shows the fractional change in u for fixed value of α = 0.50. The function u
decreases for both cases when t0 is increasing and x is increasing.
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Figure 11: The conductive temperature for
harmonically vary heating
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Figure 12: The thermodynamical distribu-
tion for harmonically vary heating

Figure 9 represents the change in stress distribution for fixed value of fractional parameter
α = 0.50. Here there is a decrease in absolute value of σxx if t0 goes on increasing as well as
when x is increasing. Moreover, it vanishes for large x.

Figure 10 represents the change in strain distribution for fixed value of fractional parameter
α = 0.50. The absolute value of e is maximum i.e., 3.1 × 10−3 for t0 = 0.1 and it decreases
not only if t0 increases but also for increase in x. Moreover, it vanishes for large x.

Figures 11–15 show the graphs of field functions with harmonically vary heating for differ-
ent values of τ0 = 0.02, 0.12, 0.20

Figure 11 shows the change in function φ for fixed value of α = 0.50. As we increase the
value of τ0, the function φ decreases. Also φ goes on decreasing with increase in value of x
and vanishes for large x.

Figure 12 shows the change in function θ for fixed value of α = 0.50. Here, θ decreases
with increase in value of τ0 as well as it decreases with increase in value of x and vanishes for
large x.

Figure 13 represents the change in displacement function u for α = 0.50. The function u
increases when the value of τ0 increases, but u decreases gradually with increase in x.

Figure 14 shows the change in stress function σxx for fixed value of α = 0.50. The absolute
value of σxx decreases when τ0 increases and also when x increases the function σxx decreases
and vanishes for large x.

Figure 15 shows the change in the strain distribution for fixed value of α = 0.50. Here the
absolute value of e is increases when τ0 increases but as x increases the value of e decreases
and vanishes for large x. It takes maximum absolute value 3.2× 10−3 for τ0 = 0.20.
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Figure 13: The displacement distribution for
harmonically vary heating
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Figure 14: The stress distribution for har-
monically vary heating
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Figure 15: The strain distribution for harmonically vary heating

9. CONCLUSION

We have solved the problem using two-type temperature method with three different heat-
ing applications and modified the work of E. Bassiouny and H. M. Youssef [35] applying the
Caputo-Fabrizio fractional order derivative.

In this paper we can see that this theory has been recovered the discontinuities in the tem-
perature, stress, strain and displacement. We observed that the fractional order parameter α,
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ramp-type parameter t0 and the relaxation time τ0 has very significant effects on temperature,
stress, strain and displacement.
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