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SOLUTIONS OF FRACTIONAL ORDER TIME-VARYING

LINEAR DYNAMICAL SYSTEMS USING THE RESIDUAL

POWER SERIES METHOD

Mahmut MODANLI, Sadeq Taha Abdulazeez∗, and Habibe GOKSU

Abstract. In this paper, the fractional order time-varying linear dynam-

ical systems are investigated by using a residual power series method. A
residual power series method (RPSM) is constructed for this problem.

The exact solution is obtained by the Laplace transform method and

the analytical solution is calculated via the residual power series method
(RPSM). As an application, some examples are tested to show the accu-

racy and efficacy of the proposed methods. The obtained result showed
that the proposed methods are effective and accurate for this type of

problem.

1. Introduction

Partial differential equations (PDEs) and the fractional order partial differ-
ential equations (FPDEs) have wide applications in many branches of science.
Mathematical models of various physical, chemical, biological, or environmen-
tal processes often include non-classical conditions. Many different methods are
used to investigate the approximate solution and the exact solution to the PDEs
and FPDEs, among these, are the homotopy perturbation method [14], the
modified quintic B-spline Crank-Nicolson collocation method [20], the Daftar-
Gaji-Jafaris method and the Laplace transforms collocation method [17], finite
difference method [18], Adomian decomposition method [22], Laplace trans-
forms method [7], Fourier series method [3], power series method [1], Sumudu
transforms method [6] and the Adams-Bashforth numerical method [21]. Var-
ious types of problems have been solved with exact and analytical solutions
using the RPSM method. Finally, a residual power series method was applied
to obtain the approximate analytical solution for PDEs [15]. Furthermore, the
dynamical systems connected to biology phenomena are described by PDEs
involving dissipation actions in [12-15].
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In this work, the fractional order time varying linear dynamical system

(1)


∂3αw(t,x)

∂t3α + ∂2αw(t,x)
∂t2α + ∂αw(t,x)

∂tα − ∂2w(t,x)
∂x2 = f(t, x), 0 < x < L,

0 < t < T, 0 < α ≤ 1
w(0, x) = v1(x), wt(0, x) = v2(x), wtt(0, x) = v3, 0 ≤ x ≤ L,
w(t, 0) = k1(t), 0 ≤ t ≤ T,w(t, L) = k2(t), 0 ≤ t ≤ T.

is investigated. Here, f, v1,v2 and v3 are known continuous functions and
w(t, x) is an unknown function to be found. The Laplace transform method and
the residual power series method will be used to find exact and analytical solu-
tion of this problem. This study differs from earlier studies by examining the
solution to this problem using the suggested method. The linear time-varying
system model is critical for many ostensibly nonlinear systems, including mix-
ers and capacitor switching filters, where the signal path is designed to be linear
but can change in response to other inputs like local oscillators and clocks. The
main advantage of the Caputo approach is that the initial conditions defined for
Caputo-derived fractional differential equations are the same as those specified
for integer-order differential equations. Therefore, according to recent studies
in the literature, the Caputo partial derivative factor is preferred more than the
Riemann-Liouville derivative in analytic and numerical solutions to fractional
differential equations. The exact solutions of the partial differential equations
of fractional order are very rare in the literature, various methods have been
developed for finding approximate and analytical solutions, ,including the Ho-
motopy Perturbation General Transform Method (HPGTM) [16], the fractional
residual power series method [17], the Homotopy perturbation Sawi transform
method (HPSTM) [18], the Laplace Residual Power Series Method [19], and
the Crank–Nicholson difference scheme [20]. One of these methods is “Residual
power series method”, which will be tested in this study. The residual power
series method is mainly based on the general formula of Taylor series and the
residual error function. A new analytical solution is being investigated. The
residual power series method is designed to reveal the reliability and fast con-
vergence ability by comparing the solutions obtained with the present method
with the exact solution.

Now, we will give some basic definitions:

Definition 1.1. [19] Let β, n ∈ N , n− 1 ≤ α ≤ n, and β ≥ [|α|]. Then we
define

Dα(xβ) =
xβ−α

Γ(β − α+ 1)
Γ(β + 1).

Definition 1.2. Time dependent α-order Dα
t w(t, x) Caputo fractional de-

rivative for n− 1 < α ≤ n, is defined in [19], as follows

Dα
t w(t, x) =

∂αw(t, x)

∂tα
=

1

Γ(n− α)

t∫
0

1

(t− p)α−n+1

∂αw(p, x)

∂pα
∂p,
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and for α = n ∈ N, it is defined as

Dα
t w(t, x) =

∂αw(t, x)

∂tα
=

∂nw(t, x)

∂tn
.

Now, we will try to find the exact solution of the following example for the
problem (1), by using the Laplace transform method.

Example 1.3. Consider the third-order fractional partial differential equa-
tion:

(2)



∂3αw(t,x)
∂t3α + ∂2αw(t,x)

∂t2α + ∂αw(t,x)
∂tα − ∂2w(t,x)

∂x2 = f(t, x),

f(t, x) = ( 6t3−3α

Γ(4−3α) +
6t3−2α

Γ(4−2α) +
6t3−α

Γ(4−α) + t3) cosx,

0 < x < π
2 , 0 < t < 1, 0 < α ≤ 1,

w(0, x) = wt(0, x) = wtt(0, x) = 0,
w(t, 0) = w(t, π

2 ) = 0.

To find the exact solution of equation (2) firstly, we take the Laplace trans-
form to both sides of equation (2), we have

(3)

(
∂3αw(t, x)

∂t3α

)
+

(
∂2αw(t, x)

∂t2α

)
+

(
∂αw(t, x)

∂tα

)
−
(
∂2w(t, x)

∂x2

)
= (f(t, x)) ,

L
(
∂3αw(t, x)

∂t3α

)
+ L

(
∂2αw(t, x)

∂t2α

)
+ L

(
∂αw(t, x)

∂tα

)
− L

(
∂2w(t, x)

∂x2

)
=

L
(
(

6t3−3α

Γ(4− 3α)
+

6t3−2α

Γ(4− 2α)
+

6t3−α

Γ(4− α)
+ t3) cosx

)
,(4)

by using the initial conditions, we obtain

s3αw(s, x) + s2αw(s, x) + sαw(s, x)− wxx(s, x)

=

{
6Γ(4− 3α)

s4−3αΓ(4− 3α)
+

6Γ(4− 2α)

s4−2αΓ(4− 2α)
− 6Γ(4− α)

s4−αΓ(4− α)
+

6

s4

}
cosx,(5)

we can rewrite the equation (5), as follows
(6)

s3αw(s, x)+s2αw(s, x)+sαw(s, x)−wxx(s, x) =

{
6

s4−3α
+

6

s4−2α
− 6

s4−α
+

6

s4

}
cosx.

Equation (6) is called the second order nonlinear homogeneous equation. Sup-
pose that the solution of equation (6) is of the following form:

(7) w(s, x) = wc(s, x) + wp(s, x).

The homogeneous part of equation (6) is

(8)
(
s3α + s2α + sα

)
.w(s, x)− wxx(s, x) = 0.

To solve this equation, it is possible to take

(9) wc(s, x) = c.emx.
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If the partial derivative of the equation (9), with respect to x is written in the
form of equation (8), then the characteristic equation is;

(10) s3α + s2α + sα −m2 = 0.

From equation (10), we can obtain the roots of equation (8), then we get the
solution to the homogeneous part of equation (6), us follows

(11) wc(s, x) = c1e
x
√
s3α+s2α+sα + c2e

−x
√
s3α+s2α+sα .

To solve the non-homogeneous part of the equation (6) as follows

(12) wp(s, x) = A(s) cosx

firstly take the derivatives of equation (12), and substitute in equation (6), then
we get

(13)
(
s3α + s2α + sα + 1

)
.A(s) cosx =

6

s4
{
s3α + s2α + sα + 1

}
cosx,

simplify the above equation, then we get

(14) A(s) =
6

s4
.

Substituting the value of A(s) in (12), it gives

(15) wp(s, x) =
6

s4
cosx.

Substituting (11) and (15) into equation (7), we have
(16)

w(s, x) = wc(s, x)+wp(s, x) = c1e
x
√
s3α+s2α+sα + c2e

−x
√
s3α+s2α+sα +

6

s4
cosx.

If the limit value in equation (2) is used instead of conditions, then it is clear
that the values of c1 and c2 are 0. Therefore the solution is

(17) w(s, x) =
6

s4
cosx,

take the inverse Laplace transform of both sides of equation (17), then it gives
the exact solution

(18) w(t, x) = L−1(w(s, x)) = L−1(
6

s4
cosx) = t3 cosx.

2. Constructing the residual power series method for the pro-
posed model

This section includes the discussion of the fundamental scheme of RPSM to
solve problem (1). The solution of problems (1) in RPSM can be explained by
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expanding the power series around the initial point t = 0, and suppose that
the solutions take the expansion

(19) w(t, x) =

∞∑
i=0

fi(x)t
iq

firstly, we define the wk(t, x) to denote k. term of the solution w(t, x) is given
as

(20) wk(t, x) =

∞∑
i=0

fi(x)t
i, i = 0, 1, 2, ...,

for the solution of w(t, x), where k = 1, 2, 3, ..., w(t, x) clearly satisfies the initial
conditions. Therefore, the solution of the equation w(t, x) depending on the
initial value conditions, the 0th residual power series is taken as
(21)

w(0, x) = v1(x) = f0(x), wt(0, x) = v2(x) = f1(x), wtt(0, x) = v3 = f2(x).

On the other hand, the first condition in equation (20) is satisfied. After
that, the first approximate solutions of the residual power method with w(x, t)
should be

(22) w1(t, x) = f0(x) + f1(x)t+ f2(x)t
2.

Therefore, to find the value of the coefficients of the residual power series
method, the expansion series (20) for k = 3, 4, 5, ... can be reformulated as

(23) wk(t, x) = f0(x) + f1(x)t+ f2(x)t
2 +

k∑
i=3

fi(x)t
i.

In the expansion of solution for equation (1), the remaining functions of the
equation (23) should be defined as:

(24) Resw(t, x) =
∂3αw(t, x)

∂t3α
+

∂2αw(t, x)

∂t2α
+

∂αw(t, x)

∂tα
− ∂2w(t, x)

∂x2
− f(t, x).

Therefore, the residual functions of the k.term of Reswk(t, x), is of the following
form
(25)

Reswk(t, x) =
∂3αwk(t, x)

∂t3α
+

∂2αwk(t, x)

∂t2α
+

∂αwk(t, x)

∂tα
− ∂2wk(t, x)

∂x2
− f(t, x)

for k = 1, 2, 3, ... . It is clear that Reswk(t, x) = 0 and limx→∞ Reswk(t, x) =
Reswk(t, x) for x ∈ [0, X] and t ≥ 0. Therefore, it can be written for t = 0,

s = 0, ∂s

∂tsReswk(t, x) = 0. For more details (see[15, 2]).
To obtain the fi(x) coefficients, where i = 2, 3, 4, ..., k. Then, the following
operations will be applied for the values of equation (25)

∂sReswk(t, x)

∂ts
= 0.
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Applying the derivative formula and substituting the expression for t = 0, then
the following equation will be solved for the coefficients

(26) Reswk(t, x) = 0, t = 0, s = 2, 3, 4, , , , k.

In this way, all coefficients in the power series can be found.

3. Applications of the RPSM to the fractional order time-varying
linear dynamical systems

In this section, we will apply the residual power series method for solving
fractional order time varying linear dynamical system, to show the accuracy and
efficacy of the proposed method. For this purpose, we consider the following
third order fractional partial differential equation

(27)



∂3αw(t,x)
∂t3α + ∂2αw(t,x)

∂t2α + ∂αw(t,x)
∂tα − ∂2w(t,x)

∂x2 =(
6t3−3α

Γ(4−3α) +
6t3−2α

Γ(4−2α) +
6t3−α

Γ(4−α) + t3
)
cosx,

0 < x < π
2 , 0 < t < 1, 0 < α ≤ 1,

w(0, x) = wt(0, x) = wtt(0, x) = 0,
w(t, 0) = w(t, π

2 ) = 0.

Using the residual power series method, firstly by using the formula (19) on
each parts of (27), then we obtain the following equations

wx(t, x) =

∞∑
i=0

∂fi(x)t
i

∂x
,

wxx(t, x) =
∞∑
i=0

∂2fi(x)t
i

∂x2
,

D3α
t w(t, x) =

∞∑
i=0

fi(x)
ti−3α

Γ(i+ 1− 3α)
Γ(i+ 1),

D2α
t w(t, x) =

∞∑
i=0

fi(x)
ti−2α

Γ(i+ 1− 2α)
Γ(i+ 1),

Dα
t w(t, x) =

∞∑
i=0

fi(x)
ti−α

Γ(i+ 1− α)
Γ(i+ 1).

Now we express the k.terms of w(t, x) for i = 0, 1, 2, ...,

w(t, x) =

k∑
i=0

fi(x)t
i,
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using the above formula, we get the following terms

wx(t, x) =

k∑
i=0

∂fi(x)t
i

∂x
,

wxx(t, x) =

k∑
i=0

∂2fi(x)t
i

∂x2
,

D3α
t w(t, x) =

k∑
i=3

fi(x)
ti−3α

Γ(i+ 1− 3α)
Γ(i+ 1),

D2α
t w(t, x) =

k∑
i=2

fi(x)
ti−2α

Γ(i+ 1− 2α)
Γ(i+ 1),

Dα
t w(t, x) =

k∑
i=1

fi(x)
ti−α

Γ(i+ 1− α)
Γ(i+ 1).

The solution of w(t, x) of the residual power series with 0th, depending on the
initial conditions are

w(0, x) = 0 = fo(x),

wt(0, x) = 0 = f1(x),

wtt(0, x) = 0 = f2(x),

using the formula (25), when i = 0, 1, 2, ...in the residual iteration method,
then equation (27) becomes:

Reswk(t, x) =

(
k∑

i=3

fi(x)
ti−3α

Γ(i+ 1− 3α)
Γ(i+ 1)

)
+

(
k∑

i=2

fi(x)
ti−2α

Γ(i+ 1− 2α)
Γ(i+ 1)

)

+

(
k∑

i=1

fi(x)
ti−α

Γ(i+ 1− α)
Γ(i+ 1)

)
−

(
k∑

i=0

∂2fi(x)t
i

∂x2

)
(28)

−(
6t3−3α

Γ(4− 3α)
+

6t3−2α

Γ(4− 2α)
+

6t3−α

Γ(4− α)
+ t3) cosx.

By using formula (22) and the above equation, then we obtain the following
iterations

w1(t, x) = 0.
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If k = 3, then we have

Resw3(t, x) =

(
3∑

i=3

fi(x)
ti−3α

Γ(i+ 1− 3α)
Γ(i+ 1)

)

+

(
3∑

i=2

fi(x)
ti−2α

Γ(i+ 1− 2α)
Γ(i+ 1)

)

+

(
3∑

i=1

fi(x)
ti−α

Γ(i+ 1− α)
Γ(i+ 1)

)

−

(
3∑

i=0

∂2fi(x)t
3

∂x2

)
− (

6t3−3α

Γ(4− 3α)
+

6t3−2α

Γ(4− 2α)
+

6t3−α

Γ(4− α)
+ t3) cosx.

Since f1(x) = f2(x) = 0, hence

Resu3(t, x) =

(
6f3(x)

t3−3α

Γ(4− 3α)

)
+

(
6f3(x)

t3−2α

Γ(4− 2α)

)
+

(
6f3(x)

t3−α

Γ(4− α)

)

(29) −
(
∂2f3(x)t

3

∂x2

)
= (

6t3−3α

Γ(4− 3α)
+

6t3−2α

Γ(4− 2α)
+

6t3−α

Γ(4− α)
+ t3) cosx,

if we rearranging the last equation;

f3(x)

[
6t3−3α

Γ(4− 3α)
+

6t3−2α

Γ(4− 2α)
+

6t3−α

Γ(4− α)

]
−
(
∂2f3(x)t

3

∂x2

)
= (

6t3−3α

Γ(4− 3α)
+

6t3−2α

Γ(4− 2α)
+

6t3−α

Γ(4− α)
+ t3) cosx.(30)

Since the first part will be zero for t = 0, so we have

−
(
∂2f3(x)t

3

∂x2

)
= t3 cosx,

integrating the above expression twice; we have

(31) f3(x) = cosx.

Substituting the values of f0(x) = f1(x) = f2(x) = 0, and equation (31) in
formula (23), we obtain

w2(t, x) = t3 cosx.

By the same way we can obtain w3(t, x), w4(t, x), w5(t, x) . . . , and substituting
in formula (19), then it gives the exact solution as

w(t, x) = t3 cosx.
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4. Conclusion

In this study, the third-order time-varying fractional partial differential
equation is discussed. The exact solution of the fractional partial differential
equation is obtained by the Laplace transform method. The Residual Power
Series method was constructed for the third-order fractional time-varying lin-
ear dynamical systems. The analytical solution was obtained by the proposed
method. The result obtained by the Residual Power Series method is equivalent
to the exact solution that we obtained by the Laplace transform method.
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