• Title/Summary/Keyword: Formal mathematical knowledge

Search Result 35, Processing Time 0.023 seconds

A Short Discussion about Connection of Informal and Formal Mathematical Knowledge (비형식적 수학적 지식과 형식적 수학적 지식의 결합에 관한 소고)

  • 김진호
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.555-563
    • /
    • 2002
  • The purpose of this paper is to try formulating a working definition of connection of informal and formal mathematical knowledge. Many researchers have suggested that informal mathematical knowledge should be connected with school mathematics in the process of learning and teaching it. It is because informal mathematical knowledge might play a important role as a cognitive anchor for understanding school mathematics. To implement the connection of them we need to know what the connection means. In this paper, the connection between informal and formal mathematical knowledge refers to the making of relationship between common attributions involved with the two knowledge. To make it clear, it is discussed that informal knowledge consists of two properties of procedures and conceptions as well as formal mathematical knowledge does. Then, it is possible to make a connection of them. Now it is time to make contribution of our efforts to develop appropriate models to connect informal and formal mathematical knowledge.

  • PDF

Interpretation of Pre-service Teachers' Knowledge by Shulman-Fischbein Framework : For Students' Errors in Plane Figures (평면도형 영역에서 Shulman-Fischbein 개념틀을 활용한 학생의 오류에 대한 예비 교사의 지식 분석)

  • Kim, Ji Sun
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.297-314
    • /
    • 2018
  • This article aims at providing implication for teacher preparation program through interpreting pre-service teachers' knowledge by using Shulman-Fischbein framework. Shulman-Fischbein framework combines two dimensions (SMK and PCK) from Shulman with three components of mathematical knowledge (algorithmic, formal, and intuitive) from Fischbein, which results in six cells about teachers' knowledge (mathematical algorithmic-, formal-, intuitive- SMK and mathematical algorithmic-, formal-, intuitive- PCK). To accomplish the purpose, five pre-service teachers participated in this research and they performed a series of tasks that were designed to investigate their SMK and PCK with regard to students' misconception in the area of geometry. The analysis revealed that pre-service teachers had fairly strong SMK in that they could solve the problems of tasks and suggest prerequisite knowledge to solve the problems. They tended to emphasize formal aspect of mathematics, especially logic, mathematical rigor, rather than algorithmic and intuitive knowledge. When they analyzed students' misconception, pre-service teachers did not deeply consider the levels of students' thinking in that they asked 4-6 grade students to show abstract and formal thinking. When they suggested instructional strategies to correct students' misconception, pre-service teachers provided superficial answers. In order to enhance their knowledge of students, these findings imply that pre-service teachers need to be provided with opportunity to investigate students' conception and misconception.

수세기를 통한 순열과 조합의 이해

  • Jung, In-Chul
    • East Asian mathematical journal
    • /
    • v.25 no.3
    • /
    • pp.247-262
    • /
    • 2009
  • Permutation and combination are the part of mathematics which can be introduced the pliability and diversity of thought. In prior studies of permutation and combination, there treated difficulties of learning, strategy of problem solving, and errors that students might come up with. This paper provides the method so that meaningful teaching and learning might occur through the systematic approach of permutation and combination. But there were little prior studies treated counting numbers that basic of mathematics' action. Therefore this paper tries to help the understanding of permutation and combination with the process of changing from informal knowledge to formal knowledge.

A Note on Computing the Crisp Order Context of a Fuzzy Formal Context for Knowledge Reduction

  • Singh, Prem Kumar;Kumar, Ch. Aswani
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.184-204
    • /
    • 2015
  • Fuzzy Formal Concept Analysis (FCA) is a mathematical tool for the effective representation of imprecise and vague knowledge. However, with a large number of formal concepts from a fuzzy context, the task of knowledge representation becomes complex. Hence, knowledge reduction is an important issue in FCA with a fuzzy setting. The purpose of this current study is to address this issue by proposing a method that computes the corresponding crisp order for the fuzzy relation in a given fuzzy formal context. The obtained formal context using the proposed method provides a fewer number of concepts when compared to original fuzzy context. The resultant lattice structure is a reduced form of its corresponding fuzzy concept lattice and preserves the specialized and generalized concepts, as well as stability. This study also shows a step-by-step demonstration of the proposed method and its application.

The Connection between Informal Knowledge and Formal Knowledge on Division (자연수 나눗셈에 관한 비형식적 지식과 형식적 지식의 연결 방안)

  • Lee, Jong-Euk
    • The Mathematical Education
    • /
    • v.47 no.1
    • /
    • pp.91-106
    • /
    • 2008
  • Interviews with 24 pupils in grade 1-2 were used to investigate awareness of the relation between situation and computation in simple quotitive and partitive division problems as informally experienced. Then it was suggested how to connect children's informal knowledge and formal knowledge of division. Most subjects counted cubes or made drawing, and related these methods to the situation described in the problems. In result, quotitive division was experienced as a dealing situation, where the number of items represented by the divisor was repeatedly taken from the whole number. And estimate-adjust was the most frequently displayed way of experiencing partitive division. Therefore, partitive division with its two measurement variables can be related to a measurement model. And children should be taught column algorithms for division with estimated-adjust which pupils used for partitive division problems.

  • PDF

Investigating Children's Informal Knowledge and Strategies: The Case of Fraction Division

  • Yeo, Sheunhyun
    • Research in Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.283-304
    • /
    • 2019
  • This paper investigates what informal knowledge and strategies fifth-grade students brought to a classroom and how much they had potential to solve fraction division story problems. The findings show that most of the participants were engaged to understand the meaning of fraction division prior to their formal instruction at school. In order to solve the story problems, the informal knowledge related to fractions as well as division was actively utilized in student's strategies and justification. Students also used various informal strategies from mental calculation, direct modeling, to relational thinking. Formal instructions about fraction division at schools can be facilitated for sense-making of this complex fraction division conception by unpacking informal knowledge and thinking they might bring to the classrooms.

First to Third Graders Have Already Established (분수 개념에 대한 초등학생들의 비형식적 지식 분석 - 1${\sim}$3학년 중심으로 -)

  • Oh, Yu-Kyeong;Kim, Jin-Ho
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.145-174
    • /
    • 2009
  • Based on the thinking that people can understand more clearly when the problem is related with their prior knowledge, the Purpose of this study was to analysis students' informal knowledge, which is constructed through their mathematical experience in the context of real-world situations. According to this purpose, the following research questions were. 1) What is the characteristics of students' informal knowledge about fraction before formal fraction instruction in school? 2) What is the difference of informal knowledge of fraction according to reasoning ability and grade. To investigate these questions, 18 children of first, second and third grade(6 children per each grade) in C elementary school were selected. Among the various concept of fraction, part-whole fraction, quotient fraction, ratio fraction and measure fraction were selected for the interview. I recorded the interview on digital camera, drew up a protocol about interview contents, and analyzed and discussed them after numbering and comment. The conclusions are as follows: First, students already constructed informal knowledge before they learned formal knowledge about fraction. Among students' informal knowledge they knew correct concepts based on formal knowledge, but they also have ideas that would lead to misconceptions. Second, the informal knowledge constructed by children were different according to grade. This is because the informal knowledge is influenced by various experience on learning and everyday life. And the students having higher reasoning ability represented higher levels of knowledge. Third, because children are using informal knowledge from everyday life to learn formal knowledge, we should use these informal knowledge to instruct more efficiently.

  • PDF

Intuitive Knowledge of Percentages Prior to Learning

  • Rosenthal, Iris;Ilany, Bat-Sheva;Almog, Nava
    • Research in Mathematical Education
    • /
    • v.13 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • This research examined intuitive knowledge of 6th grade students in Israel prior to the formal learning of percentages in school. In other words. the research investigated knowledge of basic concepts and familiarity with the usage of percentages in daily life. Results have shown that students are familiar with the concept of percentages and thai some students are able to handle simple problems composed of common percentages (50% and 25%). However, it was also found that many students had misconceptions that should be taken into account while the subject has been taught.

  • PDF

A Study on Alternative Formalization of Division of Fractions Using Informal Knowledge (비형식적 지식을 이용한 대안적인 분수 나눗셈의 형식화 방안에 관한 연구)

  • Baek Sun Su
    • Education of Primary School Mathematics
    • /
    • v.8 no.2 s.16
    • /
    • pp.97-113
    • /
    • 2004
  • The purpose of this study is to develop instructional methods for the formalized algorithm through informal knowledge in teaching division of fractions. The following results have been drawn from this study: First, before students learn formal knowledge about division of fractions, they knowledge or strategies to solve problems such as direct modeling strategies, languages to reason mathematically, and using operational expressions. Second, students could solve problems using informal knowledge which is based on partitioning. But they could not solve problems as the numbers involved in problems became complex. In the beginning, they could not reinvent invert-and-multiply rule only by concrete models. However, with the researcher's guidance, they can understand the meaning of a reciprocal number by using concrete models. Moreover, they had an ability to apply the pattern of solving problems when dividend is 1 into division problems of fractions when dividend is fraction. Third, instructional activities were developed by using the results of the teaching experiment performed in the second research step. They consist of student's worksheets and teachers' guides. In conclusion, formalizing students' informal knowledge can make students understand formal knowledge meaningfully and it has a potential that promote mathematical thinking. The teaching-learning activities developed in this study can be an example to help teachers formalize students' informal knowledge.

  • PDF

The Levels of the Teaching of Mathematical Reasoning on the Viewpoint of Mathematical Forms and Objects (수학의 형식과 대상에 따른 수학적 추론 지도 수준)

  • Seo Dong-Yeop
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.95-113
    • /
    • 2006
  • The study tries to differentiate the levels of mathematical reasoning from inductive reasoning to formal reasoning for teaching gradually. Because the formal point of view without the relation to objects has limitations in the creation of a new knowledge, our mathematics education needs consider the such characteristics. We propose an intuitive level of proof related in concrete operations and perceptual experiences as an intermediating step between inductive and formal reasoning. The key activity of the intuitive level is having insight on the generality of reasoning. The details of the process should pursuit the direction for going away from objects and near to formal reasoning. We need teach the mathematical reasoning gradually according to the appropriate level of reasoning more differentiated.

  • PDF