• Title/Summary/Keyword: Form Error

Search Result 1,267, Processing Time 0.025 seconds

An Analysis of Performance Error of High Precision Measuring Instrument (진원도 측정기의 오차특성에 관한 연구)

  • 한응교;노병옥;허민석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.862-874
    • /
    • 1989
  • A phase evil method and spectrum analysis were instrument error which is originated from measurement system and the form error of standard specimens. An instrument with a rotating table supported by an air bearing is calibrated using standard specimens. The phase of standard specimens was measured 12 times on the rotating table with rotating 30 in turn and its measurement magnification was set by 100000 times. As a result of data analysis of all the observations, read out at each of 144 orientations(per 2.5) from recorded datafiles, the error of the performance of the instrument and those of the standard specimens are evaluated and a systematic deviation of the instrument is determined. In the particular instrument used in the present experiment, the deviation of the instrument is determined with the accuracy of 15nm and those of standard specimens with the accuracy of 23, 13 n, respectively. The reproducibility of the instrument is investigated, too. If the instrument is calibrated by using the above standard specimens, then the accuracy of the measurement of roundness error can be improved to about 15nm.

Closed-Form Expression of Approximate ML DOA Estimates in Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템에 적용되는 ML 도래각 추정 알고리즘의 근사 추정치에 대한 Closed-Form 표현)

  • Paik, Ji Woong;Kim, Jong-Mann;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.886-893
    • /
    • 2017
  • Recently, for detection of low-RCS targets, bistatic radar and multistatic radar have been widely employed. In this paper, we present the process of deriving the received signal modeling of the bistatic MIMO radar system and deals with the performance analysis of applying the bistatic signal to the ML arrival angle estimation algorithm. In case of the ML algorithm, as the number of the targets increases, azimuth search dimension for DOA estimation also increases, which implies that the ML algorithm for multiple targets is computationally very intensive. To solve this problem a closed-form expression of estimation error is presented for performance analysis of the algorithm.

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.

A Study on Error of Frequence Rainfall Estimates Using Random Variate (무작위변량을 이용한 강우빈도분석시 내외삽오차에 관한 연구)

  • Chai, Han Kyu;Eam, Ki Ok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.159-167
    • /
    • 2000
  • In the study rainfall frequency analysis attemped the many specific property data record duration it is differance from occur to error-term and probability ditribution of concern manifest. error-term analysis of method are fact sample data using method in other hand it is not appear to be fault that sample data of number to be small random variates. Therefore, day-rainfall data: to randomicity consider of this study sample data to the Monte Carlo method by randomize after data recode duration of form was choice method which compared an assumed maternal distribution from splitting frequency analysis consequence. In the conclusion, frequency analysis of chuncheon region rainfall appeared samll RMSE to the Gamma II distribution. In the rainfall frequency analysis estimate RMSE using random variates great transform, RMSE is appear that return period increasing little by little RMSE incresed and data number incresing to RMSE decreseing.

  • PDF

NURBS Interpolation Algorithm for CNC Machines (CNC 공작기계의 NURBS 보간 알고리즘에 관한 연구)

  • Hong, Won-Pyo;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.115-120
    • /
    • 2000
  • Increasing demands on precision machining of free-form surface have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates. This paper presents new algorithm for high precision 3D(3-dimensional) NURBS(Non-Uniform Rational B-Spline) interpolation in the reference-pulse technique. Based o the minimum path error strategy, interpolation algorithm was designed to follow the NURBS curve. Using this algorithm a real-time 3D NURBS interpolator was developed in software. The algorithm implemented in a PC showed promising results in interpolation error and speed performance. It is expected that this can be applied to the CNC systems for the high precision machining of complex shapes.

  • PDF

Experimental Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수를 이용한 유정압테이블 운동정밀도 해석법의 실험적 검증)

  • Oh, Yoon-Jin;Park, Chun-Hong;Lee, Chan-Hong;Hong, Joon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2002
  • A new model utilizing a transfer function was proposed in the previous paper fur analizing motion errors of hydrostatic tables. Validity of the proposed method was theoretically verified as the calculated motion errors were compared with the results by conventional multi pad method. In this paper, relationship between form error of rail and motion errors of hydrostatic table is analized theoretically in order to comprehand so-called ‘averaging effect of oil film’. Experiments on the motion errors of hydrostatic table is conducted with 3 different rails, and the results are compared with the results calculated by Transfer Function Method. The results show good agreement. From the results, it is verified that TFM is very effective to analize the motion errors of hydrostatic table.

Active Noise Control Algorithm having Fast Convergence (빠른 수렴성을 갖는 능동 소음제어 알고리즘에 관한 연구)

  • 나희승;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.670-677
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithm. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popular algorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer stimulations and experiments.

  • PDF

Noncoherent Detection of Orthogonal Modulation Combined with Alamouti Space-Time Coding

  • Simon, Marvin K.;Wang, Ji-Bing
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.124-134
    • /
    • 2003
  • In this paper, we investigate the error probability performance of noncoherently detected orthogonal modulation combined with Alamouti space-time block coding. We find that there are two types of pair-wise error probabilities that characterize the performance. We employ methods that allow a direct evaluation of exact, closed-form expressions for these error probabilities. Theoretical as well as numerical results show that noncoherent orthogonal modulation combined with space-time block coding (STBC) achieves full spatial diversity. We derive an expression for approximate average bit error probability for-ary orthogonal signaling that allows one to show the tradeoff between increased rate and performance degradation.

A New In-band Full-duplex SIC Scheme Using a Phase Rotator

  • Lee, Haesoon;Kim, Dongkyu;Kim, Jinmin;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.240-245
    • /
    • 2014
  • How well the self-interference cancellation (SIC) technique performs is a primary issue in realizing an in-band full-duplex (FD) wireless communication system. One factor affecting its performance is channel estimation error on the self-interference channel. We propose a new analog SIC scheme which is robust to channel estimation error. It uses phase rotators in the radio frequency (RF) chain. We also derive closed-form equations for the residual self-interference of the proposed and the conventional schemes. The analytical and numerical results show that the residual self-interference under the proposed SIC scheme is less than that using the conventional scheme, even though channel estimation error is present.