• Title/Summary/Keyword: Fluidity Evaluation

Search Result 86, Processing Time 0.02 seconds

Evaluation of the Flowability of the Heavyweight Concrete using Magnetite Powder and Copper Slag as Fine Aggregate (자철석 분말 및 동슬래그를 잔골재로 활용한 중량 콘크리트의 유동성 평가)

  • Moon, Hoon;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.195-196
    • /
    • 2018
  • The Research is underway to utilize heavyweight concrete for various applications. One of them is to use heavy concrete as a marine concrete such as a breakwater to resist wave. Marine concrete is often complex in shape and requires high fluidity. When the heavyweight concrete is high fluidity, there is a high risk of segregation due to the high density of the coarse aggregate. Therefore, we evaluate the fluidity of heavyweight concrete using heavy fine aggregate. As a result of the fluidity evaluation of the heavyweight concrete, the fluidity of the heavy fine aggregate was similar to that of ordinary concrete. Therefore, it is considered that the use of heavy fine aggregate in the development of high fluidity heavyweight concrete will be one of the methods.

  • PDF

A Comparison Study Between Evaluation Methods on the Rheological Properties of Cement Paste (시멘트 페이스트의 유동 특성에 관한 평가방법 비교연구)

  • Han Cheon-Goo;Lee Gun-Cheol;Heo Young-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.75-82
    • /
    • 2006
  • This study investigates the influence of various blending factors on cement paste fluidity and find out the most effective evaluation method of cement paste flow, comparing flow test apparatuses such as ring flow(R-F), flow cone(F-C) and mini slump(M-S). A viscometer also measures the rheology coefficients to secure faithful numerical data. Firstly, series I examines cement paste, affected by several cement products and mineral admixture types in the range of W/B 40%, ordinary fluidity, and W/B 30%, high fluidity. In this series, the three types of cement product depended on companies, are randomly used and the mineral admixture, such as fly ash, blast furnace slag and silica fume, are incorporated in the cement paste, in response to the ratio of 10, 20, to 30%, respectively. In addition, series II studies various chemical admixture types, affecting the cement paste. This series is carried out with manufacturing companies and component types in the range of W/C 30%, high fluidity. For the manufacturing companies, randomly four products are used and for the component types, polycaboxylate, melamine, naphthalene and lignosulfonate type are chosen. Test results showed that in the fluidity test of cement paste considering various types of blending factors, R-F exhibited similar tendency with F-C and M-S. In the analysis of consistency curves measured by viscometer, the fluidity evaluation method using flow test apparatuses was significantly effective, except for the some of the low fluidity specimens. In conclusion of this study, R-F was the most convenient, faithful and effective fluidity evaluation method of cement paste.

Evaluation of the Fluidity of Fly Ash Cement Paste (플라이 애시 혼합 시멘트 페이스트의 유동성 평가)

  • 이승헌;김홍주;판정열;대문정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1221-1226
    • /
    • 2000
  • Influence of characters of fly ash on the fluidity of cement paste with polycarboxylic acid type superplasticizer has been investigated in connection with the particle size of distribution, unburned carbon content, specific surface area and shape of fly ash. The fluidity of paste is increased with increasing roundness of fly ash and it is decreased with increasing n-value of Rosin-Rammler distribution function. There is a linear correlation between roundness/n-value and fluidity of fly ash cement paste.

Segregation Evaluation Method for Powder Based High Fluidity Concrete (분체계 고유동 콘크리트의 재료분리 판정방법 분석)

  • Lee, Hyuk-Ju;Han, Jun-Hui;Lee, Jae-Jin;Han, Dong-Yeop;Han, In-Duck;Han, Min-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.140-141
    • /
    • 2018
  • There are three types of high fluidity concrete: powder based, VMA based, and combined. In the case of the powder based high fluidity concrete mixture, according to the textbook, increased viscosity due to the replaced fly ash can prevent segregation of coarse aggregate. On the other hand, decreased density of the powder due to the fly ash replacement can causes segregation but there is no report on this issue. Therefore, in this research, the segregation resistance and segregation evaluation method for powder based high fluid concrete mixture are evaluated. As a result, with increased replacing ration of supplementary materials, EIS value was decreased and apparently segregation resistance was increased. However, from the compressive strength evaluation depending on height of the cylindrical specimen, it was confirmed that the different of strength difference between top and bottom part of the specimen. Thus, following research regarding vertical segregation should be studied.

  • PDF

Suitability Analysis of Slump and Slump Flow In the Fluidity Evaluation of Normal Strength Concrete (보통 콘크리트의 유동성평가에 슬럼프 및 슬럼프 플로우의 적합성 분석)

  • Song, Yuan-Lou;Zhao, Yang;Han, In-Deok;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.42-43
    • /
    • 2015
  • This study has analyze the suitable area of slump and slump flow among the fluidity evaluation of concrete by measuring slum and slump flow variation according to unit quantity and fine aggregate percentage in a low W/C mix. The fluidity of concrete can be expressed well with the slump value when sump value is 122mm or less. On the other hand, the fluidity of concrete can be expressed more accurately with slump flow value when slump is 122mm or greater.

  • PDF

The Influence of Alloying Elements on the Fluidity of Al-Zn-Mg Alloys (Al-Zn-Mg계 알루미늄 합금의 유동성에 미치는 합금원소의 영향)

  • Cho, Jea-Sup;Kim, Jee-Hun;Sim, Woo-Jeong;Im, Hang-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.127-132
    • /
    • 2012
  • Al-Zn-Mg alloys, being high strength aluminum alloys, have attracted attention as a material of automobile parts that require higher mechanical properties and lightness. Automobile parts with complex shapes are manufactured by low-priced casting method, but Al-Zn-Mg alloys are difficult to cast because of its poor hot cracking, feeding, and fluidity. Thus fluidity experiments on Al-Zn-Mg alloys were conducted for the castability evaluation. The effects of Mg and Zn, representative elements of Al-Zn-Mg alloys, on fluidity were observed. Spiral mold was used for fluidity experiments and the lengths of solidified specimens were measured after melting and gravity casting. Correlation between microstructures and fluidity length based on the alloy composition was considered. According to the experimental results, as the amount of Mg and Zn increased, fluidity decreased. Also, it was confirmed that fluidity change by the variation of Mg composition was greater than that of Zn.

Evaluation of Fluidity and Viscosity of Aluminum Alloys in the Mushy Zone by Using Real-time X-ray Observation (실시간 엑스레이 관찰을 통한 알루미늄 합금의 고액 공존구간내 유동도와 점성도 평가)

  • Cho, In-Sung;Lee, Hag-Ju
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.129-132
    • /
    • 2006
  • In the present study the new method was proposed by using the real-time X-ray observation and metal die in order to evaluate fluidity and viscosity of the molten metal during pouring into the mold. The special mold for the present experiment was introduced since X-ray could not transmit thick mold wall and scatter the image of the molten metal during pouring. The present study also discussed for evaluation of viscosities by using the flow data from radioscopy images, and the viscosities of six commercial aluminum alloys were evaluated and compared.

Segregation Evaluation Method using J-Ring of High Strength High Fluidity Concrete (고강도 분체계 고유동 콘크리트의 J-Ring을 이용한 재료분리 판정 분석)

  • Lee, Hyuk-Ju;Lee, Young-Jun;Hyun, Seong-Yong;Han, Dong-Yeop;Han, In-Duck;Han, Min-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.157-158
    • /
    • 2018
  • In this study, the current tendency to replace a large amount of material admixture, which is fly ash (FA) and blast furnace slag (BS), into concrete is that high-grade cheese high admixture of high fluidity concrete In consideration of the substitution rate, we considered J-Ring to investigate the influence on the segregation resistance and the method of evaluating the classical segregation. In addition to the admixture replacement rate in the study results, the EIS using J-Ring became lower and the percentage of vehicles with segregation increased. Such a tendency is considered to be positive when J-Ring is used when segregation is judged if segregation degree is similar to EIS using J-Ring.

  • PDF

Evaluation of Filling Performance of Steel Concrete Panel (SCP) Mock-up Member with Low-binder based High-fluidity Concrete (저분체 기반 고유동 콘크리트의 Steel Concrete Panel Mock-up 부재 충전 성능 평가)

  • Park, Gi Joon;Park, Jung Jun;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.477-483
    • /
    • 2019
  • Recently, precast type SCP modules are being used instead of PSC structures in order to reduce the construction period and costs of special structures such as nuclear power plants and LNG storage tanks. The inside of the SCP module is connected with a stud for the integral behavior of the steel and concrete, and the use of high fluidity concrete is required. High fluidity concrete generally has a high content of binder, which leads to an increase in hydration heat and shrinkage, and a problem of non-uniform strength development. Therefore, in this study, fluidity and passing performance of high fluidity concrete according to material properties are investigated to select optimum mix design of low binder based high fluidity concrete. Mechanical properties of high fluidity concrete before and after pumping are examined using pump car. The filling performance of SCP mock-up members was evaluated by using high fluidity concrete finally.

The evaluation of concrete high fluidity by the combination of hybrid fiber (하이브리드 섬유의 조합에 따른 콘크리트의 고유동성 평가)

  • Jung, Sang-Kyung;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.51-52
    • /
    • 2015
  • In this study, the concrete in which the hybrid fiber with different volume and rate was intermixed in high fluidity concrete. However, Fiber Ball is frequently caused by the decrease in the dispersion of the fiber. The research has been conducted primarily study of single fiber or hybrid fiber, such as different length of single fiber. Therefore, we investigate the mechanical properties of concrete was mixed with a combination of various fibers been produced domestically. Its purpose being to provide basic data for evaluating the impact hybrid fibers on the fluidity of concrete.

  • PDF