• 제목/요약/키워드: Fixed-point problem

검색결과 353건 처리시간 0.022초

MULTIPLE POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS WITH IMPULSE

  • Song, Xiaohua;Zhao, Zengqin;Wang, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.875-883
    • /
    • 2009
  • At least two positive solutions of a first-order periodic boundary value problem with impulse are obtained by establishing a new cone and the theorem of fixed point index. And at the end of this paper we give an example to illustrate the application of our main results.

  • PDF

SOLVING QUASIMONOTONE SPLIT VARIATIONAL INEQUALITY PROBLEM AND FIXED POINT PROBLEM IN HILBERT SPACES

  • D. O. Peter;A. A. Mebawondu;G. C. Ugwunnadi;P. Pillay;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.205-235
    • /
    • 2023
  • In this paper, we introduce and study an iterative technique for solving quasimonotone split variational inequality problems and fixed point problem in the framework of real Hilbert spaces. Our proposed iterative technique is self adaptive, and easy to implement. We establish that the proposed iterative technique converges strongly to a minimum-norm solution of the problem and give some numerical illustrations in comparison with other methods in the literature to support our strong convergence result.

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEMS WITH DEPENDENCE ON THE FIRST ORDER DERIVATIVE

  • Guo, Yanping;Han, Xiaohu;Wei, Wenying
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1323-1329
    • /
    • 2010
  • In this paper, a new fixed point theorem in cone is applied to obtain the existence of at least one positive pseudo-symmetric solution for the second order three-point boundary value problem {x" + f(t, x, x')=0, t $\in$ (0, 1), x(0)=0, x(1)=x($\eta$), where f is nonnegative continuous function; ${\eta}\;{\in}$ (0, 1) and f(t, u, v) = f(1+$\eta$-t, u, -v).

Highly Efficient and Precise DOA Estimation Algorithm

  • Yang, Xiaobo
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.293-301
    • /
    • 2022
  • Direction of arrival (DOA) estimation of space signals is a basic problem in array signal processing. DOA estimation based on the multiple signal classification (MUSIC) algorithm can theoretically overcome the Rayleigh limit and achieve super resolution. However, owing to its inadequate real-time performance and accuracy in practical engineering applications, its applications are limited. To address this problem, in this study, a DOA estimation algorithm with high parallelism and precision based on an analysis of the characteristics of complex matrix eigenvalue decomposition and the coordinate rotation digital computer (CORDIC) algorithm is proposed. For parallel and single precision, floating-point numbers are used to construct an orthogonal identity matrix. Thus, the efficiency and accuracy of the algorithm are guaranteed. Furthermore, the accuracy and computation of the fixed-point algorithm, double-precision floating-point algorithm, and proposed algorithm are compared. Without increasing complexity, the proposed algorithm can achieve remarkably higher accuracy and efficiency than the fixed-point algorithm and double-precision floating-point calculations, respectively.

TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITY

  • Tan, Huixuan;Feng, Hanying;Feng, Xingfang;Du, Yatao
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.75-82
    • /
    • 2014
  • In this paper, we consider the periodic boundary value problem with sign changing nonlinearity $$u^{{\prime}{\prime}{\prime}}+{\rho}^3u=f(t,u),\;t{\in}[0,2{\pi}]$$, subject to the boundary value conditions: $$u^{(i)}(0)=u^{(i)}(2{\pi}),\;i=0,1,2$$, where ${\rho}{\in}(o,{\frac{1}{\sqrt{3}}})$ is a positive constant and f(t, u) is a continuous function. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The interesting point is the nonlinear term f may change sign.

Algorithm of Common Solutions to the Cayley Inclusion and Fixed Point Problems

  • Dar, Aadil Hussain;Ahmad, Mohammad Kalimuddin;Iqbal, Javid;Mir, Waseem Ali
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.257-267
    • /
    • 2021
  • In this paper, we develop an iterative algorithm for obtaining common solutions to the Cayley inclusion problem and the set of fixed points of a non-expansive mapping in Hilbert spaces. A numerical example is given for the justification of our claim.

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.