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POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR

THREE-POINT BOUNDARY VALUE PROBLEMS WITH

DEPENDENCE ON THE FIRST ORDER DERIVATIVE†

YANPING GUO, XIAOHU HAN∗, WENYING WEI

Abstract. In this paper, a new fixed point theorem in cone is applied to
obtain the existence of at least one positive pseudo-symmetric solution for
the second order three-point boundary value problem{

x′′ + f(t, x, x′) = 0, t ∈ (0, 1),
x(0) = 0, x(1) = x(η),

where f is nonnegative continuous function; η ∈ (0, 1) and f(t, u, v) =
f(1 + η − t, u,−v).
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1. Introduction

The multi-point boundary value problems for ordinary differential equations
arise in a variety of different areas of applied mathematics and physics. In the
past few years, there has been much attention focused on questions of three-point
boundary value problems for nonlinear differential equations; see, to name a few
[1-7]. Avery and Henderson had the existence of three positive pseudo-symmetric
solutions for a One dimensional p-Laplacian.

Recently Guo [8] used a new fixed point theorem in cone to prove the existence
of positive solution for the second order three -point boundary value problem

{
x′′ + f(t, x, x′) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = αx(η),
(1)
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where α > 0, 0 < η < 1 and 1 − αη > 0, f : [0, 1] × [0,∞) × R → [0,∞) is
continuous.

Sun [9] applied a monotone method to prove the existence of positive pseudo-
symmetric solution for a three-point boundary value problem with dependence
on the first-order derivative{

(φp((u
′(t)))′ + q(t)f(t, u, u′) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = u(η).

So, motivated by all the works above, in this paper we get the the existence of
at leat one positive pseudo-symmetric solution for a three-point boundary value
problem with dependence on the first-order derivative by the new fixed point
theorem {

x′′ + f(t, x, x′) = 0, t ∈ (0, 1),
x(0) = 0, x(1) = x(η),

(2)

where f is nonnegative continuous function, η ∈ (0, 1), and f(t, u, v) = f(1 +
η − t, u,−v).

2. Preliminary Definition and Lemmas

Definition 1. Let E be a real Banach space. A nonempty closed set P ⊂ E is
said to be a cone provided that
i) au+ bv ∈ P for u, v ∈ P and all a ≥ 0, b ≥ 0,
ii) u,−u ∈ P implies u = 0.

Definition 2. Suppose K is a cone in a Banach. The map α is a nonnegative
continuous concave functional on K, provided α : K → [0,∞) is continuous and

α(tu+ (1− t)v) ≥ tα(u) + (1− t)α(v) for u, v ∈ K, t ∈ [0, 1].

Definition 3. Let E be a real Banach space. For η ∈ [0, 1], a function u ∈ E is
said to be pseudo-symmetric about η on [0, 1], if u is symmetric over the interval
[η, 1], we have u(t) = u(1− (t− η)).

Let X be a Banach space and K ⊂ X be a cone. Suppose α, β : X → R+ are
two continuous convex functionals satisfying

α(λx) = |λ|α(x), β(λx) = |λ|β(x), for x ∈ X, λ ∈ R,

‖x‖ ≤ M max{α(x), β(x)}, for x ∈ X,

α(x) ≤ α(y), for x, y ∈ K, x ≤ y,

where M > 0 is a constant.

Lemma 1. Let r, L > 0 be constants and Ω = {x ∈ X : α(x) < r, β(x) < L},
D = {x ∈ X : α(x) = r}, E = {x ∈ X : α(x) ≤ r, β(x) = L}.
Assume T : K → K is a completely continuous operator satisfying
(A1) α(Tu) < r, u ∈ D ∩K; (A2) β(Tu) < L, u ∈ E ∩K.
Then deg{I − T,Ω ∩K, 0} = 1.



Positive pseudo-symmetric solutions for three-point boundary value problems 1325

Lemma 2. In Lemma 1. suppose (A1) and (A2) are replaced by

(A3) α(Tu) > r, u ∈ D ∩K; (A4) β(Tu) < L, u ∈ K;

and there is a p ∈ (Ω ∩K) \ {0} such that α(p) 6= 0, and α(x + λp) ≥ α(x) for
all x ∈ K and λ ≥ 0. Then deg{I − T,Ω ∩K, 0} = 0.

We need a result whose proof can be found in [8, p. 291].

Theorem 1. Let r2 > r1 > 0, L > 0 be constants and

Ωi = {x ∈ X : α(x) < ri, β(x) < L}, i = 1, 2,

two bounded open sets in X. Set Di = {x ∈ X : α(x) = ri}. Assume T : K → K
is a completely continuous operator satisfying
(A5) α(Tu) < r1, u ∈ D1

⋂
K; α(Tu) > r2, u ∈ D2

⋂
K;

(A6) β(Tu) < L, u ∈ K;
(A7) there is a p ∈ (Ω2

⋂
K) \ {0} such that α(p) 6= 0 and α(x+ λp) ≥ α(x) for

all x ∈ K and λ ≥ 0.
Then T has at least one fixed point in (Ω2 \ Ω1)

⋂
K.

3. Main results

Lemma 3. Let 0 < η < 1, If y ∈ C[0, 1] and y ≥ 0, then the unique solution x
of the problem

{
x′′ + y(t) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = x(η),
(3)

satisfies min
t∈[η,1]

x(t) ≥ η‖x‖.

Proof. From (3) we can know that there is a point σ and x(t) is maximum at
t = σ. Then ‖x‖ = x(σ). And x(1) = x(η) is minimum for t ∈ [η, 1], from the
concavity of x we get

x(σ)− x(0)

σ − 0
<

x(η)− x(0)

η − 0
,

x(σ)

σ
<

x(η)

η
,

x(η) >
η

σ
x(σ) > ηx(σ).

That completes the proof of the Lemma 3. ¤

Let X = C1[0, 1] with ‖x‖ = max
0≤t≤1

[x2(t) + (x
′
(t))2]1/2, K={x ∈ X : x(t) ≥ 0,

x is concave on [0, 1] and pseudo-symmetric about η on [0, 1]}.
Define functionals α(x) = max

0≤t≤1
|x(t)| and β(x) = max

0≤t≤1
|x′(t)| for each x ∈ X,

then
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‖x‖ ≤ √
2max{α(x), β(x)},

α(λx) = |λ|α(x), β(λx) = |λ|β(x), for x ∈ X, λ ∈ R,
α(x) ≤ α(y) for x, y ∈ K, x ≤ y.

In the following, we denote

M =
8

(1 + η)2
, m =

2

η
, Q =

2

1 + η
.

We will suppose that there are L > b > ηb > c > 0 such that f(t, u, v) satisfies
the following growth conditions:
(H1) f : [0, 1]× [0,∞)×R → [0,∞) is continuous;
(H2) f(t, u, v) < c/M for (t, u, v) ∈ [0, 1]× [0, c]× [−L,L];
(H3) f(t, u, v) ≥ b/m for (t, u, v) ∈ [0, 1]× [ηb, b]× [−L,L];
(H4) f(t, u, v) < L/Q for (t, u, v) ∈ [0, 1]× [0, b]× [−L,L];
(H5) For any u, v ∈ K, f(t, u, v) = f((1 + η − t), u,−v).
Let

f∗(t, u, v) =
{

f(t, u, v), (t, u, v) ∈ [0, 1]× [0, b]× (−∞,∞)
f(t, b, v), (t, u, v) ∈ [0, 1]× (b,∞)× (−∞,∞)

and

f1(t, u, v) =





f∗(t, u, v), (t, u, v) ∈ [0, 1]× [0,∞)× [−L,L]
f∗(t, u,−L), (t, u, v) ∈ [0, 1]× [0,∞)× (−∞,−L)
f∗(t, u, L), (t, u, v) ∈ [0, 1]× [0,∞)× (L,∞)

Then f1 ∈ C([0, 1]× [0,∞)×R,R+). Define

(Tx)(t) =





∫ t

0
(
∫ 1+η

2

s
f1(r, u(r), u

′(r)) dr)ds, 0 ≤ t ≤ 1+η
2 ,

∫ η

0
(
∫ 1+η

2

s
f1(r, u(r), u

′(r)) dr)ds
+
∫ 1

t
(
∫ s

1+η
2

f1(r, u(r), u
′(r)) dr)ds, 1+η

2 ≤ t ≤ 1.

(4)

Lemma 4. It is easy to see that T is well defined T : K → K.

Proof. Obviously, (Tx)(t) ≥ 0, for all x ∈ K . Since

(Tx)′(t) =

{ ∫ 1+η
2

t
f1(r, u(r), u

′(r)) dr, 0 ≤ t ≤ 1+η
2 ,

− ∫ t
1+η
2

f1(r, u(r), u
′(r)) dr, 1+η

2 ≤ t ≤ 1,

we can get that (Tu)′ is nonincreasing on [0, 1]. So we have Tu is concave and
Tu ∈ C1[0, 1].
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In fact, for all t ∈ [η, 1+η
2 ], we note that 1− (t− η) ∈ [ 1+η

2 , 1], so we have

(Tu)(1− (t− η)) =

∫ η

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

+

∫ 1

1−(t−η)

(

∫ s

1+η
2

f1(r, u(r), u
′(r)) dr)ds

=

∫ η

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

+

∫ t

η

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

=

∫ t

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

= (Tu)(t),

and for all t ∈ [ 1+η
2 , 1], we note that 1− (t− η) ∈ [η, 1+η

2 ], we have

(Tu)(1− (t− η)) =

∫ 1−(t−η)

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

=

∫ η

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

+

∫ 1−(t−η)

η

(

∫ 1−(s−η)

1+η
2

f1(r, u(r), u
′(r)) dr)ds

=

∫ η

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

−
∫ 1

t

(

∫ 1+η
2

1−(s−η)

f1(r, u(r), u
′(r)) dr)ds

=

∫ η

0

(

∫ 1+η
2

s

f1(r, u(r), u
′(r)) dr)ds

+

∫ 1

t

(

∫ 1−(s−η)

1+η
2

f1(r, u(r), u
′(r)) dr)ds

= (Tu)(t).

So , T : K → K. That completes the proof of the Lemma 4. ¤

Theorem 2. Suppose (H1 −H5) hold, then BVP (2) has at least one positive
solution x(t) satisfying

c < α(x) < b, |x′(t)| < L.
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Proof. Take

Ω1 = {x ∈ X : |x(t)| < c, |x′(t)| < L}, Ω2 = {x ∈ X : |x(t)| < b, |x′(t)| < L},
two bounded open sets in X, and

D1 = {x ∈ X : α(x) = c}, D2 = {x ∈ X : α(x) = b}.
Obviously, T : K → K is completely continuous, and there is a p ∈ (Ω2

⋂
K)\{0}

such that α(x+λp) ≥ α(x) for all x ∈ K and λ ≥ 0. For x ∈ (D1

⋂
K), α(x) = c.

From (H2), we get

α(Tx) = max
t∈[0,1]

|Tu| = Tu(
1 + η

2
)

=

∫ 1+η
2

0

(∫ 1+η
2

s

f1
(
r, u(r), u′(r)

)
dr

)
ds

<

(∫ 1+η
2

0

(∫ 1+η
2

s

dr

)
ds

)
c

M
= c.

Whereas for x ∈ (D2

⋂
K), α(x) = b. From Lemma 3. we have x(t) ≥ ηα(x) = ηb

for t ∈ [η, 1]. So, from (H3), we get

α(Tx) = max
t∈[0,1]

|Tu|
> |Tu(η)|

=

∫ η

0

(∫ 1+η
2

s

f1
(
r, u(r), u′(r)

)
dr

)
ds

>

(∫ η

0

(∫ 1+η
2

s

dr

)
ds

)
b

m
= b.

For x ∈ K, from (H4), we have

β(Tu) = max
t∈[0,1]

|(Tu)′(t)| = max
{
(Tu)′(0),−(Tu)′(1)

}

= max

{∫ 1+η
2

0

f1(r, u(r), u
′(r))dr,

∫ 1

1+η
2

f1(r, u(r), u
′(r))dr

}

< max

{∫ 1+η
2

0

dr,

∫ 1

1+η
2

dr

}
L

Q
= L.

Theorem 1. implies that there is a point x ∈ (Ω2 \ Ω1)
⋂
K such that x = Tx.

So, x is a positive solution for BVP (2) satisfying

c < α(x) < b, |x′(t)| < L.

That completes the proof of Theorem 2. ¤
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