• 제목/요약/키워드: Fixed-point optimization

검색결과 92건 처리시간 0.02초

디지탈 신호처리용 고정 소수점 최적화 유틸리티 (Fixed-point optimization utility for digital signal processing programs)

  • 김시현;성원용
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.33-42
    • /
    • 1997
  • Fixed-point optimization utility software that can aid scaling and wordlength determination of digital signal processign algorithms written in C or C$\^$++/ language is developed. This utility consists of two programs: the range estimator and the fixed-point simulator. The former estimates the ranges of floating-point variables for automatic scaling purpose, and the latter translates floating-point programs into fixed-point equivalents for evaluating te fixed-point performance by simulation. By exploiting the operator overloading characteristics of C$\^$++/ language, the range estimation and the fixed-point simulation can be conducted just by modifying the variable declaration of the original program. This utility is easily applicable to nearly all types of digital signal processing programs including non-linear, time-varying, multi-rate, and multi-dimensional signal processing algorithms. In addition, this software can be used for comparing the fixed-point characteristics of different implementation architectures.

  • PDF

효율적인 하드웨어 공유를 위한 단어길이 최적화 알고리듬 (A bitwidth optimization algorithm for efficient hardware sharing)

  • 최정일;전홍신;이정주;김문수;황선영
    • 한국통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.454-468
    • /
    • 1997
  • This paper presents a bitwidth optimization algorithm for efficient hardware sharing in digital signal processing system. The proposed algorithm determines the fixed-point representation for each signal through bitwidth optimization to generate the hardware requiring less area. To reduce the operator area, the algorithm partitions the abstract operations in the design description into several groups, such that the operations in the same group can share an operator. The partitioning result are fed to a high-level synthesis system to generate the pipelined fixed-point datapaths. The proposed algorithm has been implemented in SODAS-DSP an automatic synthesis system for fixed-point DSP hardware. Accepting the models of DSP algorithms in schematics, the system automatically generates the fixed-point datapath and controller satisfying the design constraints in area, speed, and SNR(Signal-to-Noise Ratio). Experimental results show that the efficiency of the proposed algorithm by generates the area-efficient DSP hardwares satisfying performance constraints.

  • PDF

유한 알파벳 PID제어기 설계 (Design of the PID Controller Using Finite Alphabet Optimization)

  • 양윤혁;권오규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.647-649
    • /
    • 2004
  • When a controller is implemented by a one-chip processor with fixed-point operations, the finite alphabet problem usually occurs since parameters and signals should be taken in a finite set of values. This paper formulates PID finite alphabet PID control problem which combines the PID controller with the finite alphabet problem. We will propose a PID parameter tuning method based on an optimization algorithm under the finite alphabet condition. The PID parameters can be represented by a fixed-point representation, and then the problem is formulated as an optimization with constraints that parameters are taken in the finite set. Some simulation are to be performed to exemplify the performance of the PID parameter tuning method proposed in this paper.

  • PDF

MPEG 심리음향 모델-ll 알고리듬의 ASIC 구현을 위한 고정 소수점 연산 최적화 (Fixed-point Processing Optimization of MPEG Psychoacoustic Model-II Algorithm for ASIC Implementation)

  • 이근섭;박영철;윤대희
    • 한국통신학회논문지
    • /
    • 제29권11C호
    • /
    • pp.1491-1497
    • /
    • 2004
  • 구현하기 위하여 고정 소수점 연산기에 적합하도록 최적화를 수행하였다. 최적화 과정은 크게 부호화기의 음질을 고려하여 프로세서의 데이터 워드 길이를 결정하는 과정과 자주 사용되는 초월 함수를 고정 소수점 연산을 통해 구현하는 것으로 구성된다. 데이터 워드 길이를 결정하기 위하여 심리음향 모델 과정의 고정 소수점 연산 오차와 이 오차가 비트 할당 과정에 영향을 미칠 확률 사이의 관계를 통계적 모델로 정의하였다. 여기서 정의된 모델을 사용하여 고정 소수점 연산 오차에 의한 영향이 1% 이내가 되도록 24비트의 데이터 워드를 선택하였다. 최적화된 고정 소수점 심리음향 모델을 사용한 MP3 부호화기의 음질은 부동 소수점 부호화기에 비해 W-R의 음질평가 점수를 기준으로 평균 -0.2 이내의 구분하기 힘든 수준의 음질 저하를 보였다

IEEE 802.16e OFDMA/TDD 이동국 모뎀의 링크 성능과 복잡도 최적화를 위한 부동 및 고정 소수점 설계 (Optimization of Link-level Performance and Complexity for the Floating-point and Fixed-point Designs of IEEE 802.16e OFDMA/TDD Mobile Modem)

  • 선태형;강승원;김규현;장경희
    • 대한전자공학회논문지TC
    • /
    • 제43권11호
    • /
    • pp.95-117
    • /
    • 2006
  • 본 논문에서는 IEEE 802.16e OFDMA/TDD 이동국 모뎀의 링크 성능과 복잡도 최적화를 위한 부동 및 고정 소수점 설계에 대하여 논한다. 부동 소수점 설계에서는 이동국 모뎀에서 하향링크 트래픽 채널의 채널 추정 방법을 제안하고, 모의실험을 통하여 최적의 알고리즘을 선정한다. 그리고 시간 및 주파수 동기화, Digital Front End와 CINR 추정 기법에 관하여 성능 향상과 시스템을 최적화하기 위한 알고리즘을 제안하고, 상향링크의 트래픽 채널과 제어 채널의 부동 소수점 설계 방법을 논한다. 제안된 알고리즘은 IEEE 802.16e OFDMA/TDD 시스템에 적용하여, 모의실험을 통한 성능을 Detection Probability, Mean Acqusition Time, PER 성능 그래프 등으로 그 우수성을 검증한다. 고정 소수점 설계에서는 부동 소수점 설계로부터 최적의 고정 소수점 설계를 위한 효율적인 방법론을 제시한다. 그리고 하향링크와 상향링크의 트래픽 채널, 시간 및 주파수 동기, DFE 블록을 고정 소수점 설계하고, 모의실험을 통하여 성능과 복잡도 간의 tradeoff 관계를 최적화한다.

NEW PROOFS OF SOME FIXED POINT THEOREMS FOR MAPPINGS SATISFYING REICH TYPE CONTRACTIONS IN MODULAR METRIC SPACES

  • Godwin Amechi Okeke;Daniel Francis;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.1-9
    • /
    • 2023
  • Our aim in this paper is to give some new proofs to fixed point theorems due to Abdou [1] for mappings satisfying Reich type contractions in modular metric spaces. We removed the restriction that ω satisfies the ∆2-type condition imposed on the results of [1]. Furthermore, Lemma 2.6 of [1] which was crucial in the proofs of the results of [1] is not needed in the proofs of our results. Our method of proof is simpler and interesting.

EXISTENCE AND UNIQUENESS OF FIXED POINT OF SOME EXPANSIVE-TYPE MAPPINGS IN GENERALIZED MODULAR METRIC SPACES

  • Godwin Amechi Okeke;Daniel Francis;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.957-988
    • /
    • 2023
  • We define new classes of expansive-type mappings in the setting of modular 𝜔G-metric spaces and prove the existence of common unique fixed point for these classes of expansive-type mappings on 𝜔G-complete modular 𝜔G-metric spaces. The results established in this paper extend, improve, generalize and compliment many existing results in literature. We produce some examples to validate our results.

ON FIXED POINT THEOREMS SATISFYING COMPATIBILITY PROPERTY IN MODULAR G-METRIC SPACES

  • Daniel Francis;Godwin Amechi Okeke;Ho Geun Hyun
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.361-391
    • /
    • 2024
  • In this paper, a pair of ω-compatible self mappings in the setting of modular G-metric space is defined. We prove the existence and uniqueness of common fixed point of pairs of ω-compatible self mappings in a G-complete modular G-metric space. Furthermore, we give an example to justify our claims. The results established in this paper extend, improve, generalize and complement some existing results in literature.

BILINEAR SYSTEMS CONTROLLER DESIGN WITH APPROXIMATION TECHNIQUES

  • Lee, Sang-Hyuk;Lee, Keonhee
    • 충청수학회지
    • /
    • 제18권1호
    • /
    • pp.101-116
    • /
    • 2005
  • Using the iterative method, we derive an controller realization of the bilinear system, which is resulted from the system reformulation. We utilize Banach Fixed Point Theorem to support proposed controller, and the simulation results are also illustrated to verify usefulness of this technique.

  • PDF

INERTIAL EXTRAPOLATION METHOD FOR SOLVING SYSTEMS OF MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS USING BREGMAN DISTANCE APPROACH

  • Hammed A. Abass;Ojen K. Narain;Olayinka M. Onifade
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.497-520
    • /
    • 2023
  • Numerous problems in science and engineering defined by nonlinear functional equations can be solved by reducing them to an equivalent fixed point problem. Fixed point theory provides essential tools for solving problems arising in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization problems, equilibrium problems, complementarity problems, selection and matching problems, and problems of proving the existence of solution of integral and differential equations.The theory of fixed is known to find its applications in many fields of science and technology. For instance, the whole world has been profoundly impacted by the novel Coronavirus since 2019 and it is imperative to depict the spread of the coronavirus. Panda et al. [24] applied fractional derivatives to improve the 2019-nCoV/SARS-CoV-2 models, and by means of fixed point theory, existence and uniqueness of solutions of the models were proved. For more information on applications of fixed point theory to real life problems, authors should (see [6, 13, 24] and the references contained in).