• Title/Summary/Keyword: Fixed Factor

Search Result 911, Processing Time 0.029 seconds

Out-of-Plane Elastic Buckling of X-Bracing System with Fixed Ends (고정 지점을 갖는 X-브레이싱의 탄성 면외 좌굴)

  • Moon, Ji-Ho;Yoon, Ky-Yong;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.293-296
    • /
    • 2007
  • This study investigated the out-of-plane elastic buckling load and effective length factor of X-bracing system. The members of X-bracing system which are studied in this paper are rigidly attached to the structure at their end connections, and are pinned or rigidly connected at their point of intersection. The effective length factors are derived for the general case where the tension and compression brace have different material and geometrical properties.

  • PDF

A characterization of crossed products without cohomology

  • Hong, Jeong-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Let N be a $II_1$ factor and G be a finite group acting outerly on N. Then the crossed product algebra $M = N \rtimes G$ is also a $II_1$ factor and $N' \cap M = CI$, i.e. N is irreducible in M. Moreover, N is regular in M, in other words, M is generated by the normalizer $N_M (N)$.

  • PDF

The Enhancement of Learning Time in Fuzzy c-means algorithm (학습시간을 개선한 Fuzzy c-means 알고리즘)

  • 김형철;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

Calculation of Cronbach's Alpha Coefficient, Generalizability Index (GI), and Dependability Index (DI) in the Model Types of Survey Design (서베이 설계 모형별 Cronbach's Alpha 계수와 GI, DI 산출방안)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.701-705
    • /
    • 2011
  • The paper reviews Cronbaha's coefficient to measure a single source of error. On the contrary to classical measurement theory, the generalizability study can be used in the social survey design to calculate Generalizability Index (GI) and Dependability Index (DI) for measuring multiple sources of errors of behavior evaluation. The study proposes application guidelines to implement R:($A{\times}B$) mixed models that are composed of random factor and fixed factor.

  • PDF

Evaluation of Lateral Performance in RC Flat Plate System (철근콘크리트 무량판 구조시스템의 횡저항 성능 평가)

  • Song, Ho-Bum;Song, Jin-Gyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.151-158
    • /
    • 2006
  • Recently, as RC flat plate system is applied on high-rising building largely, necessity of all over research about lateral performance becomes a prominent. In this paper, It is estimated that performance of slab-column connection in flat plate system is inter-story drift index 3.6%. In addition, when R-factor is fixed in seismic design, it must be considered all system. Also Considering that plastic hinge propagation is not adjustable, R-factor should be applied bellow '5.5'.

  • PDF

CONVERGENCE OF A GENERALIZED BELIEF PROPAGATION ALGORITHM FOR BIOLOGICAL NETWORKS

  • CHOO, SANG-MOK;KIM, YOUNG-HEE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.515-530
    • /
    • 2022
  • A factor graph and belief propagation can be used for finding stochastic values of link weights in biological networks. However it is not easy to follow the process of use and so we presented the process with a toy network of three nodes in our prior work. We extend this work more generally and present numerical example for a network of 100 nodes.

An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections (반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.551-559
    • /
    • 2003
  • In steel frames, the analysis and design techniques are based on either idealized fixed or pinned connections. In this case, it has the advantage that the structural analysis and the design procedure were simplified, but there could be given different results of analysis between the real steel frame connections and the idealized fixed and pinned connection. This is because the real connections would be analyzed by semi-rigid, and have some transfer of moment and rotational constraint about the loads. In this study, structural analysis program with considered connections that have joint rigidity of fixed, pinned and semi-rigid, was developed. Then, the effects of joint rigidity on strength and displacement. in steel frames subjected to lateral forces and axial forces, were investigate, and the results were compared with those of the Midas Gen. w program.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

A Study on the Safety Stock (안전재고에 관한 연구)

  • 박병기;정종식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.143-147
    • /
    • 1987
  • Safety stocks constitute one of the major means of dealing with the uncertainties associated with variation in demand and lead time. Adeguate safety facilitate production activities and help to assure customers if good service on the other hand, carrying safety storks ties up working capital on goods that sit idle. The major problem of safety stocks management thus of consists of trying to achieve an optimal balance between the other carrying cost and the costs of stock shortage. Therefore, this study aims to find safety stock level of the fixed reorder quantity system and the fixed reorder cycle system of minimizing total cost when both demand and lead time are variable. (The distribution of demand and lead time is a mere assumption that follows the normal distribution) The results can be summarized as follows. i) Safety factor on the safety stock is determined by carrying cost and the costs of stock shortage: An optimal safety stick=the costs of stork shortage($C_s$) (the carrying cost($C_h$)+the costs of stock storage($C_s$). ii) The safety stock level of the fixed reorder quantity system is ($a{\;}_p\sqrt{L}{\sigma}$) under uncertainties. iii) The safety stock level of the fixed reorder cycle system is ($a{\;}_p\sqrt{R+L{\sigma}}$) under uncertain demand and constant lead time. ($a{\;}_p\sqrt{L{\sigma}_d{\;^2+{\mu}^2L{\sigma}^2}$) under demand and lead time uncertainties.

  • PDF

Comprehensive evaluating the stability of slope reinforced with free and fixed head piles

  • Xixi Xiong;Ying Fan;Jinzhe Wang;Pooya Heydari
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.523-540
    • /
    • 2023
  • The failure of slope can cause remarkable damage to either human life or infrastructures. Stabilizing piles are widely utilized to reinforce slope as a slip-resistance structure. The workability of pile-stabilized slopes is affected by various parameters. In this study, the performance of earth slope reinforced with piles and the behavior of piles under static load, by shear reduction strength method using the finite difference software (FLAC3D) has been investigated. Parametric studies were conducted to investigate the role of pile length (L), different pile distances from each other (S/D), pile head conditions (free and fixed head condition), the effect of sand density (loose, medium, and high-density soil) on the pile behavior, and the performance of pile-stabilized slopes. The performance of the stabilized slopes was analyzed by evaluating the factor of safety, lateral displacement and bending moment of piles, and critical slip mechanism. The results depict that as L increased and S/D reduced, the performance of slopes stabilized with pile gets better by raising the soil density. The greater the amount of bending moment at the shallow depths of the pile in the fixed pile head indicates the effect of the inertial force due to the structure on the pile performance.