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CONVERGENCE OF A GENERALIZED BELIEF

PROPAGATION ALGORITHM FOR BIOLOGICAL

NETWORKS†
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Abstract. A factor graph and belief propagation can be used for finding
stochastic values of link weights in biological networks. However it is not

easy to follow the process of use and so we presented the process with a

toy network of three nodes in our prior work. We extend this work more
generally and present numerical example for a network of 100 nodes..
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1. Introduction

It is imporant to understand the dynamics of interactions of genes or proteins
in biological systems ([1]). The dynamics can be described by mathematical
models such as differential equation model and Boolean model ([2], [3]). The
models have played an important role in this area. However it is not easy to
determine parameters in the models ([4]).

The authors of the papers [5] and [6] provided a framework to find parameters
in differential equation model by using experimental data, where the parame-
ters are the weights of links in a prior knowledge network(PKN) described by
system of ordinary differential equations. They consider each weight a discrete
random variable and find its probability mass function(PMF) by using a ‘belief
propagation(BP) algorithm’ on a factor graph ([7], [8], [9], [10], [11], [12]).

Given PKN and experimental data, a stochastic network can be obtained
by application of this algorithm. However it is difficult to follow each step in
the algorithm and the convergence of iterative schemes in the algorithm was
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not shown. So, we explained the steps with a toy network of three nodes and
presented a sufficient condition for the convergence in [13].

In this paper, we extend our results in [13] for networks without restriction on
the number of nodes and present a new sufficient condition for the convergence
of the general network based on a Banach fixed-point theorem ([14]). Numerical
examples are given to illustrate the convergence and application of a network of
100 nodes.

2. Preliminaries

We consider a network which has measured nodes xi (1 ≤ i ≤ M) and drug
nodes xj (M +1 ≤ j ≤ N), where xj has outgoing link wj,i to xi and no incom-
ing link to any node. Each measured node has an outgoing link to each other
measured node and incoming links from each other nodes. Two treatments are
assumed to be given to the network, which are called the 1st and 2nd perturba-

tions. Symbols xυ
i (1 ≤ i ≤ N, υ = 1, 2) denote log2

(
xυ,after
i /xυ,before

i

)
, where

xυ,before
i and xυ,after

i are the concentrations of xi at steady state before and af-
ter the υth perturbation, respectively. The dynamics of the given situation is
modeled as in [13] and steady state value xυ,s

i of xi,υ becomes

xυ,s
i =

{
ϕ
(∑N

j=1,j ̸=i wi,jx
υ
j

)
(1 ≤ i ≤ M)

xυ
i (M + 1 ≤ i ≤ N)

, (1)

where ϕ(x) = tanh(x) and wi,j is a discrete random variable with PMF

P (wi,j = w) (1 ≤ i ≤ M, 1 ≤ j ≤ N, i ̸= j), w ∈ {−1, 0, 1}. (2)

To find an approximation of the PMF is our goal using a factor graph and BP.

3. System of equations for marginal PMFs

A large and low cost between simulated and experimental values can be related
to low and high probabilities of models, respectively ([5]). So, the joint PMF of
all weights W is defined as follows.

P (W ) =
1

Z
exp (−Cost) (3)

and the cost function is defined by

Cost = β

N∑
i=1

2∑
υ=1

(xυ,s
i − xυ

i )
2 + λ

M∑
i=1

N∑
j=1,j ̸=i

δ(wi,j), (4)

where Z, β, λ are the constants, δ(wi,j) is a penalty function such that δ(wi,j =
0) = 0 and δ(wi,j = ±1) = 1. Substituting (1) into (4) gives

Cost = β

M∑
i=1

2∑
υ=1

ϕ

( N∑
j=1,j ̸=i

wi,jx
υ
j

)
− xυ

i


2

+ λ

M∑
i=1

N∑
j=1,j ̸=i

δ(wi,j). (5)
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Substituting (5) into (3) gives a factorization of P (W ) with probabilities:

P (W ) =
1

Z
exp


M∑
i=1


−β

2∑
υ=1

{
ϕ

(
N∑

j=1,j ̸=i

wi,jx
υ
j

)
− xυ

i

}2

−λ
N∑

j=1,j ̸=i

δ (wi,j)




=

M∏
i=1

1

Zi
e
−λ

N∑
j=1,j ̸=i

δ(wi,j)
2∏

υ=1

exp

−β

ϕ

 N∑
j=1,j ̸=i

wi,jx
υ
j

− xυ
i


2


≡
M∏
i=1

P (Wi∗) ,

where Wi∗ denotes weight incoming to xi and Z =
∏M

i=1 Zi. Since each PMF
in (2) can be calculated as the marginal PMF of P (Wi∗), we calculate PMF
P (w1,2) instead of P (wi,j):

P (w1,2) =
∑

{W1∗}−{w1,2}

P (W1∗) ≡
∑

2
P (W1∗)

=
1

Z1

∑
2
e
−λ

N∑
j=2

δ(w1,j)
2∏

υ=1

e
−β

{
ϕ

(
N∑

j=2
w1,jx

υ
j

)
−xυ

1

}2

.

(6)

It is not efficient to calculate the exact marginal in (6) for large N . So a factor
graph and BP are used for inferring approximate the marginal. From now on,
we explain the complicate multi-step process in [5] in the following three steps.

Step 1. Introduction of a factor graph and BP.
Using the factorization in (6), the factor nodes F υ

1 (υ = 1, 2) are defined as

F υ
1 (W1∗) = exp

−β

ϕ

 N∑
j=2

w1,jx
υ
j

− xυ
1


2
 (7)

and then (6) becomes

P (w1,2) =
1

Z1

∑
2
e
−λ

N∑
j=2

δ(w1,j)
2∏

υ=1

F υ
1 (W1∗),

which gives the factor graph of N−1 variable nodes (w1,2, . . . , w1,N ) and two
factor nodes (F 1

1 , F
2
1 ). Following BP on the factor graph, the message P υ(w1,2)

from the variable node w1,2 to the factor node F υ
1 (W1∗) is defined as

P υ (w1,2) =
1

Zυ
1,2

e−λδ(w1,2)
2∏

µ=1,µ̸=υ

ρµ (w1,2), (8)
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where Zυ
1,2 is the normalization constant of the probability P υ (w1,2) and the

message ρυ(w1,2) from F υ
1 (W1∗) to w1,2 is defined as

ρυ (w1,2)=
∑

2

{
F υ
1 (W1∗)

N∏
k=3

P υ (w1,k)

}
, (9)

where symbol
∑

2 is defined in (6). Using BP, the marginal PMF P (w1,2) can
be approximated as

P (w1,2) =
1

Z1,2
e−λδ(w1,2)

2∏
υ=1

ρυ (w1,2), (10)

where Z1,2 is the normalization constant of P (w1,2). By the definitions (8) and
(9), the message P υ(w1,2) corresponds to an approximation of P (w1,2) depending
on the υth perturbation and ρυ(w1,2) corresponds to a factor of P υ(w1,2).

Step 2. Approximation of the summation (9).
The process of the approximation used in [5] can be divided into two parts:

the first is to change multiple summations into a single summation with a new
random variable and the second is to change the summation into an integral.

Part A. Note that ρυ in (9) is a function of w1,2. Therefore all random variables
in F υ

1 (w1∗) in (9) can be divided into two type of random variables: one is w1,2

and the other is

sυ1,2 =

N∑
ξ ̸=1,2

w1,ξx
υ
ξ , (11)

which is a linear combination of random variables w1,ξ. Then F υ
1 (W1∗) in (7)

can be written as

F υ
1

(
sυ1,2, w1,2

)
= exp

[
−β
{
ϕ
(
sυ1,2 + w1,2x

υ
2

)
− xυ

1

}2]
, (12)

which is a function of random variables sυ1,2 and w1,2. Substituting (12) into (9)
gives

ρυ (w1,2) =
∑

2

F υ
1

(
sυ1,2, w1,2

) ∏
1<ℓ≤N, ℓ̸=2

P υ (w1,ℓ)

 . (13)

For some positive integer m, letting ∑
1<ξ≤N, ξ ̸=2

w̃1,ξx
υ
ξ

∣∣∣∣ w̃1,ξ ∈ {−1, 0, 1}, 1 < ξ ≤ N, ξ ̸= 2

 =

{
s̃υ1,2,k

∣∣∣∣1 ≤ k ≤ m

}
,
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the message ρυ in (13) becomes

ρυ (w1,2) =

m∑
k=1

∑
w1,ξ=w̃1,ξ (2<ξ≤N)

such that
∑

2<ξ≤N

w̃1,ξx
υ
ξ=s̃υ1,2,k

F υ
1

(
sυ1,j , w1,j

) ∏
2<ℓ≤N

P υ (w1,ℓ)


=

m∑
k=1

F υ
1

(
s̃υ1,2,k, w1,2

){ ∑
w1,ξ=w̃1,ξ (2<ξ≤N)

such that
∑

2<ξ≤N

w̃1,ξx
υ
ξ=s̃υ1,2,k

∏
2<ℓ≤N

P υ (w1,ℓ)

}
.

(14)

Since

m∑
k=1

{ ∑
w1,ξ=w̃1,ξ (2<ξ≤N)

such that
∑

2<ξ≤N

w̃1,ξx
υ
ξ=s̃υ1,2,k

∏
2<ℓ≤N

P υ (w1,ℓ)

}

=
∑
w1,ξ

(2<ξ≤N)

∏
2<ℓ≤N

P υ (w1,ℓ) =
∏

2<ℓ≤N

∑
w1,ℓ

P υ (w1,ℓ)

 = 1,

the following can be a PMF of sυ1,2 for 1 ≤ k ≤ m

P υ
s

(
sυ1,2 = s̃υ1,2,k

)
=

∑
w1,ξ=w̃1,ξ (2<ξ≤N)

such that
∑

2<ξ≤N

w̃1,ξx
υ
ξ=s̃υ1,2,k

∏
2<ℓ≤N

P υ (w1,ℓ).
(15)

Substituting (15) into (14) gives

ρυ (w1,2) =
∑
sυ1,2

F υ
1

(
sυ1,2, w1,2

)
P υ
s

(
sυ1,2
)
. (16)

Part B. The single summation (16) can be changed into an integral in this
part. Note that sυ1,2 defined in (11) is a sum of random variables w1,ξ (2 <
ξ ≤ N), which are assumed to be independent. Even though w1,ξ are not
identically distributed, Braunstein et al. [5] invoked the central limit theorem to
approximate the PMF of sυ1,2 as a Gaussian with reference to [16], where there
was no explicit justification for the application of this theorem. Since sums of
independent random variables converge in distribution to the standard normal as
long as some condition (e.g., the Lindeberg Condition [17]) is satisfied, we think
that such a condition might be implicitly assumed in [5]. So the approximate
PMF of sυ1,2 becomes

P υ
s

(
sυ1,2
)
=

1√
2π∆υ

1,2

exp

[
−
(
sυ1,2 − sυ1,2

)2
2∆υ

1,2

]
, (17)
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where sυ1,2 and ∆υ
1,2 are average and variance of sυ1,2, respectively:

sυ1,2 = E
(
sυ1,2
)
= E

 N∑
ℓ ̸=1,2

w1,ℓx
υ
ℓ

 =

N∑
ℓ̸=1,2

E (w1,ℓ)x
υ
ℓ

=

N∑
ℓ ̸=1,2

{∑
w

wP υ (w1,ℓ = w)

}
xυ
ℓ , (18)

∆υ
1,2 = V

(
sυ1,2
)
= V

 N∑
ℓ̸=1,2

w1,ℓx
υ
ℓ

 =

N∑
ℓ ̸=1,2

V (w1,ℓ) (x
υ
ℓ )

2

=

N∑
ℓ ̸=1,2

[
E
(
w1,ℓ

2
)
− {E (w1,ℓ)}2

]
(xυ

ℓ )
2

=

N∑
ℓ ̸=1,2


{∑

w
w2P υ (w1,ℓ = w)

}
−
{{∑

w
wP υ (w1,ℓ = w)

}}2

 (xυ
ℓ )

2
. (19)

Then the sum over configurations {w1,ℓ | 2 < ℓ ≤ N} in (16) is approximated
with a Gaussian integration as follows:

ρυ (w1,2) ≈
∫ ∞

−∞
F υ
1

(
sυ1,2, w1,2

)
P υ
s

(
sυ1,2
)
dsυ1,2. (20)

Step 3. Approximation of the improper integral (20).
To approximate the improper integral (20), the error ϕ

(
sυ1,2 + w1,2x

υ
2

)
− xυ

1

in (12) is linearized in sυ1,2 with respect to the maximization of the fitness in
(12). Note that the equality

ϕ
(
sυ1,2 + w1,2x

υ
2

)
− xυ

1 = 0

can be written as

ϕ−1(xυ
1 )− w1,2x

υ
2 − sυ1,2 = 0

under the assumption that

the experimental data xυ
1 is contained in the codomain of ϕ. (21)

Then error ϕ
(
sυ1,2 + w1,2x

υ
2

)
− xυ

1 in (12) is approximated by

ϕ−1(xυ
1 )− w1,2x

υ
2 − sυ1,2,

which gives

F υ
1

(
sυ1,2, w1,2

)
= exp

[
−β
{
ϕ
(
sυ1,2 + w1,2x

υ
2

)
− xυ

1

}2]
≈ exp

[
−β
{
ϕ−1(xυ

1 )− w1,2x
υ
2 − sυ1,2

}2]
.

(22)
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By (17) and (22), the improper integral (20) becomes

ρυ (w1,2) ≈
∫ ∞

−∞
F υ
1

(
sυ1,2, w1,2

)
P υ
s

(
sυ1,2
)
dsυ1,2

≈
∫ ∞

−∞


exp

[
−β
{
ϕ−1(xυ

1 )− w1,2x
υ
2 − sυ1,2

}2]
· 1√

2π∆υ
1,2

exp

[
− (sυ1,2−sυ1,2)

2

2∆υ
1,2

]  dsυ1,2

=
1(

1 + 2β∆υ
1,2

)1/2 exp

[
−β

{
ϕ−1(xυ

1 )− w1,2x
υ
2 − sυ1,2

}2
1 + 2β∆υ

1,2

]
,

where the last equality is obtained by both the identity

−β
{
ϕ−1(xυ

1 )− w1,2x
υ
2 − sυ1,2

}2−(sυ1,2 − sυ1,2
)2

2∆υ
1,2

= −1

2

(1 + 2β∆υ
1,2)

[
sυ1,2 −

sυ1,2+β
{
ϕ−1(xυ

1 )−w1,2x
υ
2

}
2∆υ

1,2

1+2β∆υ
1,2

]2
∆υ

1,2

−β

{
ϕ−1(xυ

1 )− w1,2x
υ
2 − sυ1,2

}2
1 + 2β∆υ

1,2

and the property that the integral of a PDF over its domain is equal to 1.
Therefore P (w1,2 = w) in (10) can be obtained by solving the system of equations

ρυ (w1,2 = w) =
1(

1 + 2β∆υ
1,2

)1/2 exp

[
−β

{
ϕ−1(xυ

1 )− wxυ
2 − sυ1,2

}2
1 + 2β∆υ

1,2

]
,(23)

P υ (w1,2 = w) =
1

Zυ
1,2

e−λδ(w1,2=w)ρ3−υ (w1,2 = w), (24)

where sυ1,2 and ∆υ
1,2 are in (18) and (19) with υ = 1, 2 and w = −1, 0, 1.

Remark 3.1. Similarly, approximate marginal PMF P (wi,j) can be obtained
as follows.

P (wi,j) =
1

Zi,j
e−λδ(wi,j)

2∏
υ=1

ρυ (wi,j),

ρυ (wi,j) =
1(

1 + 2β∆υ
i,j

)1/2 exp

[
−β

{
ϕ−1(xυ

i )− wi,jx
υ
j − sυi,j

}2
1 + 2β∆υ

i,j

]
,

P υ (wi,j) =
1

Zυ
i,j

e−λδ(wi,j)ρ3−υ (wi,j),
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where Zυ
i,j is the normalization constant of probability P υ (wi,j) and equations

(18), (19) give

sυi,j =
∑N

ℓ ̸=i,j

{∑
w
wP υ (wi,ℓ = w)

}
xυ
ℓ

=
∑N

ℓ ̸=i,j

e−λ

Zυ
i,ℓ

{
−ρ3−υ (−1) + ρ3−υ (1)

}
xυ
ℓ , (25)

∆υ
i,j =

∑N

ℓ ̸=i,j

{(∑
w
w2P υ (w)

)
−
(∑

w
wP υ (w)

)2}
(xυ

ℓ )
2

=
∑N

ℓ ̸=i,j

[
{P υ (−1) + P υ (1)} − {−P υ (−1) + P υ (1)}2

]
(xυ

ℓ )
2

=

N∑
ℓ ̸=i,j

e−λ

Zυ
i,ℓ

[ {
ρ3−υ (−1) + ρ3−υ(1)

}
− e−λ

Zυ
i,ℓ

{
−ρ3−υ (−1) + ρ3−υ(1)

}2 ] (xυ
ℓ )

2
. (26)

4. Iteration method for marginal PMFs

In this section, we present iterative schemes for solving the equations (23),
(24) and show a sufficient condition for the convergence of the schemes.

4.1. Iterative schemes for solving the system of equations.
We construct sequences {ρυ1,2,n (w)} and {P υ

1,2,n(w)} using (23) and (24), which
limits satisfy (23) and (24). So the limit of {ρυ1,2,n (w)} becomes value ρυ(w1,2 = w),
leading to the construction of approximate P (w1,2) in (10). Assume that

initial terms ρυ1,2,0 (w) are given as positive numbers (27)

and initial terms of {P υ
1,2,n (w)} are defined as

P υ
1,2,0(w) =

1

Zυ
1,2,0

e−λδ(w)ρ3−υ
1,2,0 (w) , (28)

where Zυ
1,2,0 is the normalization constant. The first iterations ρυ1,2,1 (w) and

P υ
1,2,1 (w) are defined similarly to (23) and (24). So, equation (18) gives the

definition of sυ1,2,0 as follows.

sυ1,2,0 =
∑N

ℓ̸=1,2

{
−P υ

1,ℓ,0 (−1) + P υ
1,ℓ,0 (1)

}
xυ
ℓ

=
∑N

ℓ̸=1,2

e−λ

Zυ
1,ℓ,0

{
−ρ3−υ

1,ℓ,0 (−1) + ρ3−υ
1,ℓ,0 (1)

}
xυ
ℓ .

And equation (19) gives the definition of ∆υ
1,2,0

∆υ
1,2,0 =

∑N

ℓ̸=1,2


{
P υ
1,ℓ,0 (−1) + P υ

1,ℓ,0 (1)
}

−
{
−P υ

1,ℓ,0 (−1) + P υ
1,ℓ,0 (1)

}2

 (xυ
ℓ )

2
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=

N∑
ℓ ̸=1,2

e−λ

Zυ
1,ℓ,0


{
ρ3−υ
1,ℓ,0 (−1) + ρ3−υ

1,ℓ,0(1)
}

− e−λ

Zυ
1,ℓ,0

{
−ρ3−υ

1,ℓ,0 (−1) + ρ3−υ
1,ℓ,0(1)

}2

 (xυ
ℓ )

2
.

So the 1st iteration is defined as

ρυ1,2,1 (w) =
1(

1 + 2β∆υ
1,2,0

)1/2 exp

[
−β

{
ϕ−1(xυ

1 )− wxυ
2 − sυ1,2,0

}2
1 + 2β∆υ

1,2,0

]
,

P υ
1,2,1 (w) =

1

Zυ
1,2,1

e−λδ(w)ρ3−υ
1,2,1 (w) ,

where Zυ
1,2,1 is the normalization constant. Similarly the (n + 1)th iteration is

defined as

ρυ1,2,n+1 (w) = Φυ
1,2,w

(
ρ3−υ
1,2∗,n (−1) , ρ3−υ

1,2∗,n (1)
)
, (29)

P υ
1,2,n+1 (w) =

1

Zυ
1,2,n+1

e−λδ(w)ρ3−υ
1,2,n+1 (w) (n ≥ 0) , (30)

where Zυ
1,2,n+1 is the normalization constant. Here the function Φυ

1,2,w of ρ3−υ
1,2∗,n(−1)

and ρ3−υ
1,2∗,n (1) is defined as

Φυ
1,2,w

(
ρ3−υ
1,2∗,n (−1) , ρ3−υ

1,2∗,n (1)
)
=

1(
1 + 2β∆υ

1,2,n

)1/2

× exp

−β

{
ϕ−1(xυ

1 )− wxυ
2 −

N∑
ℓ ̸=1,2

e−λ

Zυ
1,ℓ,n

(
−ρ3−υ

1,ℓ,n (−1) + ρ3−υ
1,ℓ,n (1)

)
xυ
ℓ

}2

1 + 2β∆υ
1,2,n


(31)

and ρ3−υ
1,2∗,n denotes (ρ3−υ

1,3,n, · · · , ρ
3−υ
1,N,n). Therefore the schemes consist of (27)–

(31) under the assumption (21).

Remark 4.1. Note that sequence {ρυ1,2,n (w)} in the recursive relation (29)
contains no P υ

1,2,n(w). And similarly {ρυ1,j,n (w)} and {P υ
1,j,n(w)} are defined.

In the next subsection, we present a sufficient condition for the convergence of
sequence {ρυ1,j,n (w)} without using {P υ

1,j,n(w)} and, as a result, the limit of
{ρυ1,j,n (w)} is used to define the message ρυ (w1,j = w).

4.2. A sufficient condition for the convergence of the iterative schemes.
Replacing subscript (1, 2) in (27)–(31) with (1, j) gives the iterative scheme for
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ρυ (w1,j = w). Let X
(n)
1 be a vector in R6N−6 (N ≥ 2) defined by

X
(n)
1 =


X

(n)
1,1 , X

(n)
1,2 , X

(n)
1,3 , · · · ,

X
(n)
1,3N−5, X

(n)
1,3N−4, X

(n)
1,3N−3,

X
(n)
1,3N−2, X

(n)
1,3N−1, X

(n)
1,3N , · · · ,

X
(n)
1,6N−8, X

(n)
1,6N−7, X

(n)
1,6N−6



=


ρ11,2,n (−1) , ρ11,2,n (0) , ρ

1
1,2,n (1) , · · · ,

ρ11,N,n (−1) , ρ11,N,n (0) , ρ
1
1,N,n (1) ,

ρ21,2,n (−1) , ρ21,2,n (0) , ρ
2
1,2,n (1) , · · · ,

ρ21,N,n (−1) , ρ21,N,n (0) , ρ
2
1,N,n (1)


and Φ1 be a function from R6N−6 to R6N−6 defined by

Φ1 =


Φ1,1, Φ1,2, Φ1,3, · · · ,
Φ1,3N−5,Φ1,3N−4,Φ1,3N−3,
Φ1,3N−2,Φ1,3N−1,Φ1,3N , · · · ,
Φ1,6N−8,Φ1,6N−7,Φ1,6N−6

 =


Φ1

1,2,−1, Φ
1
1,2,0, Φ1

1,2,1, · · · ,
Φ1

1,N,−1,Φ
1
1,N,0,Φ

1
1,N,1,

Φ2
1,2,−1, Φ

2
1,2,0, Φ2

1,2,1, · · · ,
Φ2

1,N,−1,Φ
2
1,N,0,Φ

2
1,N,1

 ,

where the subscript 1 of X1 and Φ1 represents node x1 and the definition of
Φ1,k follows that of equation (31). For example, Φ1

1,2,−1 is defined as follows.

Φ1
1,2,−1 (X) =

1(
1 + 2β∆1

1,2,X

)1/2 exp

−β

{
ϕ−1(x1

1)− wx1
2 − s11,2,X

}2

1 + 2β∆1
1,2,X

 ,

where s11,2,X and ∆1
1,2,X are defined by following equtions (25) and (26):

s11,2,X =
e−λ

Z1
1,3,X

(−X3N+1 +X3N+3)x
1
3 + · · ·+ e−λ

Z1
1,N,X

(−X6N−8 +X6N−6)x
1
N ,

∆1
1,2,X =

e−λ

Z1
1,3,X

{
(X3N+1 +X3N+3)−

e−λ

Z1
1,3,X

(−X3N+1 +X3N+3)
2

}(
x1
3

)2
+ · · ·+ e−λ

Z1
1,N,X

{
(X6N−8 +X6N−6)−

e−λ

Z1
1,N,X

(−X6N−8 +X6N−6)
2

}(
x1
N

)2
,

where Z1
1,j,X is defined by following the definition of Z1

1,j,n such as

Z1
1,3,X = e−λX3N+1 +X3N+2 + e−λX3N+3.

The (n+ 1)th iteration in (29) is written as

X
(n+1)
1 = Φ1

(
X

(n)
1

)
. (32)

We use Banach fixed-point theorem [14] for the convergence of the sequence (32)
to prove Theorem 4.4, which is our main result.
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Theorem 4.1. Let D be a closed subset of Rm for a positive integer m. If a
function Ψ : D → D satisfies that for a constant k ∈ (0, 1) and all x,y in D

∥Ψ(x)−Ψ(y)∥ ≤ k∥x− y∥,

then there exists a unique fixed point x∗ ∈ D such that Ψ(x∗) = x∗, which is the
limit of sequence x(n+1) = Ψ

(
x(n)

)
for any x(0) ∈ D.

Since each function Φ1,k of Φ1 is defined by equation (31), the codomain of Φ1,k

is [0, 1], we assume that the following lemma holds.

Lemma 4.2. Assume that experimental data are contained in the codomain of
ϕ. Then there exists a closed bounded domain D ⊂ R6N−6 such that Φ1 in (32)
becomes a function from domain D to codomain D.

Lemma 4.3. Assume that experimental data are contained in the codomain of
ϕ. Let D be in Lemma 4.2. Then for Φ1 defined in (32) and {X,Y} ⊂ D,

∥Φ1(X)−Φ1(Y)∥ ≤ βMβ∥X−Y∥,

where

Mβ = max
X⊂D,i,j

∣∣∣∣∂∆υ
1,j,X

∂Xi

∣∣∣∣+ max
X⊂D,i,j

∣∣∣∣∣∣∣
∂

∂Xi

{
ϕ−1(xυ

1 )− wxυ
j − sυ1,j,X

}2

1 + 2β∆υ
1,j,X

∣∣∣∣∣∣∣
Proof. Using (31), we have that for {X,Y} ⊂ D

Φ1,1 (X)− Φ1,1 (Y) = Φ1
1,2,−1 (X)− Φ1

1,2,−1 (Y)

= f (X) exp [g (X)]− f (Y) exp [g (Y)] , (33)

where functions f and g are defined as follows:

f (X) =
(
1 + 2β∆1

1,2,X

)−1/2
,

g (X) = −β

{
ϕ−1(x1

1)− wx1
2 − s11,2,X

}2

1 + 2β∆1
1,2,X

.

Due to the mean value theorem there exists a constant c in (0,1) such that

|f(X)− f(Y)| ≤ ∥∇f((1− c)X+ cY)∥∥X−Y∥. (34)

Using the following property∣∣∣∣ ∂f(X)

∂X3N+1

∣∣∣∣ =
∣∣∣∣∣−1

2
f(X)

3
2β

∂∆1
1,2,X

∂X3N+1

∣∣∣∣∣ ≤ β

∣∣∣∣∣ ∂∆1
1,2,X

∂X3N+1

∣∣∣∣∣ ,
equation (34) becomes

|f(X)− f(Y)| ≤

(
β max

X⊂D,i

∣∣∣∣∣∂∆1
1,2,X

∂Xi

∣∣∣∣∣
)
∥X−Y∥. (35)
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There exists a constant c in (0,1) such that

|exp [g (X)]− exp [g (Y)]| ≤ ∥∇ exp[g((1− c)X+ cY)]∥∥X−Y∥. (36)

Since 0 < exp[g(X)] ≤ 1, we have∣∣∣∣ ∂

∂X3N+1
exp [g (X)]

∣∣∣∣ ≤
∣∣∣∣ ∂

∂X3N+1
g (X)

∣∣∣∣
≤ β

∣∣∣∣∣∣∣
∂

∂X3N+1

−β

{
ϕ−1(x1

1)− wx1
2 − s11,2,X

}2

1 + 2β∆1
1,2,X


∣∣∣∣∣∣∣ .

Then (36) becomes

|exp[g(X)]− exp[g(Y)]| ≤

β max
X⊂D,i

∣∣∣∣∣∣∣
∂

∂Xi

{
ϕ−1(x1

1)− wx1
2 − s11,2,X

}2

1 + 2β∆1
1,2,X

∣∣∣∣∣∣∣
 ∥X−Y∥.

(37)
Substituting (35) and (37) into (33) gives

|Φ1,1 (X)− Φ1,1 (Y)| ≤ β


max
X⊂D,i

∣∣∣∂∆1
1,2,X

∂Xi

∣∣∣
+ max

X⊂D,i

∣∣∣∣∣ ∂
∂Xi

{
ϕ−1(x1

1)−wx1
2−s11,2,X

}2

1+2β∆1
1,2,X

∣∣∣∣∣
 ∥X−Y∥,

which gives the desired result. □

Using Theorem 4.1, Lemmas 4.2 and 4.3, we can obtain our main result.

Theorem 4.4. Assume that the experimental data xυ
1 (υ = 1, 2) are contained

in the codomain of ϕ. Let D be in Lemma 4.2. Suppose that positive constants
β and λ satisfy

β

 max
X⊂D,i,j

∣∣∣∣∂∆υ
1,j,X

∂Xi

∣∣∣∣+ max
X⊂D,i,j

∣∣∣∣∣∣∣
∂

∂Xi

{
ϕ−1(xυ

1 )− wxυ
j − sυ1,j,X

}2

1 + 2β∆υ
1,j,X

∣∣∣∣∣∣∣
 < 1.

Then sequence X
(n+1)
1 = Φ1

(
X

(n)
1

)
converges for any X

(0)
1 ⊂ D.

Remark 4.2. Using the limit ρυ1,j,w of {ρυ1,j,n (w)}, we can obtain approximate
marginal PMFs

P (w1,j = w) =
1

Z1,j
e−λδ(w1,j=w)

∏2

υ=1
ρυ1,j,w (2 ≤ j ≤ N, w = −1, 0, 1).
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5. Numerical examples

In order to show the convergence of sequences {ρυ1,j,n (w)} for N = 100 and
2 ≤ j ≤ N , we randomly generate artificial data for xν

i (1 ≤ i ≤ N, ν = 1, 2) in
the open interval (−1, 1), the codomain of ϕ(x) = tanh(x), and so the condition
on the experimental data is satisfied.

We set (β, λ) = (0.1, 1) and simulate the following system of equations

ρυ1,j,n+1 (w) =
1(

1 + 2β∆υ
1,j,n

)1/2 exp

[
−β

{
ϕ−1(xυ

1 )− wxυ
j − sυ1,j,n

}2
1 + 2β∆υ

1,j,n

]
,

sυ1,j,n =
∑N

ℓ ̸=1,j

e−λ

Zυ
1,ℓ,n

{
−ρ3−υ

1,ℓ,n (−1) + ρ3−υ
1,ℓ,n (1)

}
xυ
ℓ ,

∆υ
1,j,n =

N∑
ℓ ̸=1,j

e−λ

Zυ
1,ℓ,n


{
ρ3−υ
1,ℓ,n (−1) + ρ3−υ

1,ℓ,n(1)
}

− e−λ

Zυ
1,ℓ,n

{
−ρ3−υ

1,ℓ,n (−1) + ρ3−υ
1,ℓ,n(1)

}2

 (xυ
ℓ )

2
,

Zυ
1,ℓ,n = e−λρ3−υ

1,ℓ,n (−1) + ρ3−υ
1,ℓ,n (0) + e−λρ3−υ

1,ℓ,n (1) ,

where the initial values ρυ1,j,0 (w) are randomly generated in (0,1) and the other

initial values of Zυ
1,j,n, s

υ
1,j,n and ∆υ

1,j,n are defined by replacing ρυ1,j,n (w) in the

definition of Zυ
1,j,n, s

υ
1,j,n and ∆υ

1,j,n with ρυ1,j,0 (w). The convergence is measured

by using the difference of the consecutive terms in each sequence {ρυ1,j,n (w)}.
Figure 1 shows that {ρυ1,2,4 (w)} and {ρυ1,2,5 (w)} are very close, which implies
the convergence of {ρυ1,2,n (w)}.

Figure 1. Absolute values of {ρυ1,2,n (w)}−{ρυ1,2,n−1 (w)} (n =
1, 2, 3, 4, 5, w = −1, 0, 1) and the last value is 2.8365e-07.
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Figure 2 shows that {ρυ1,j,10 (w)} and {ρυ1,j,9 (w)} (2 ≤ j ≤ N) are very close,
which implies the convergence of {ρυ1,j,n (w)}.

Figure 2. Absolute values of {ρυ1,j,10 (w)} − {ρυ1,j,9 (w)} (2 ≤
j ≤ 100, w = −1, 0, 1) and the last value is 6.7597e-12.

In order to show the application of PMF P (w1,j = w) we consider node xj

an activation node to x1 if P (w1,j = 1) > P (w1,j = −1). Similarly, a node
xj an inhibition node to xi if P (w1,j = 1) < P (w1,j = −1). As in Figure 3,
nodes x2 and x99 are activation and inhibition nodes to x1, respectively, where
the height of each line at xj denotes its probability. Even if the heights are
similar, we can select top 10 activation and inhibition nodes to x1 among 99
nodes xj(2 ≤ j ≤ N).
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Figure 3. Activation and inhibition nodes xj (2 ≤ j ≤ 100)
to x1. Node x2 is an activation node to x1 and the height of
line from x2 denotes probability P (w1,2 = 1). Node x99 is an
inhibition node to x1 and the height of line from x99 denotes
P (w1,99 = −1).

6. Conclusions

In this paper we extend our results in [13] to a network of N nodes. We
present the process to define approximate PMFs of link weights in the network
based on BP on the factor graph, where the PMFs can be calculated by solving
system of equations. However the system cannot be solved analytically. To
find the solution of the system we construct sequences of which limits are the
solution and find a sufficient condition for the convergence of the sequences. The
construction of the sequences is more general than that in our prior work. We
show the convergence numerically and an application of the PMFs.
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