• 제목/요약/키워드: Finite fields $GF(2^m)$

검색결과 62건 처리시간 0.026초

유한체 GF(3m)상의 고속 병렬 곱셈기의 설계 (Design of High-Speed Parallel Multiplier on Finite Fields GF(3m))

  • 성현경
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2015
  • 본 논문에서는 유한체 $GF(3^m)$상에서 모든 항에 0이 아닌 계수를 갖는 기약 다항식에 대하여 m이 홀수 및 짝수인 경우 $GF(3^m)$상의 곱셈 알고리즘을 제시하였으며, 제시한 곱셈 알고리즘을 이용하여 고속의 병렬 입-출력 모듈구조의 곱셈기를 설계하였다. 제시한 곱셈기의 구성은 $(m+1)^2$개의 동일한 기본 셀들로 설계되었으며, 셀에 메모리를 사용하지 않았으므로 회로가 간단하며 셀당 $T_A+T_X$의 지연시간을 갖는다. 본 논문에서 제안한 곱셈기는 규칙성과 셀 배열에 의한 모듈성을 가지므로 m이 큰 회로의 확장이 용이하며 VLSI회로 실현에 적합할 것이다.

All-One Polynomial에 의해 정의된 유한체 $GF(2^m) $ 상의 새로운 Low-Complexity Bit-Parallel 정규기저 곱셈기 (A New Low-complexity Bit-parallel Normal Basis Multiplier for$GF(2^m) $ Fields Defined by All-one Polynomials)

  • 장용희;권용진
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권1_2호
    • /
    • pp.51-58
    • /
    • 2004
  • 대부분의 공개키 기반 암호시스템은 유한체 $GF(2^m)$ 상의 산술 연산들을 기반으로 구축된다. 이들 연산 중 덧셈을 제외한 다른 연산들은 곱셈 연산을 반복하여 계산되므로, 곱셈 연산의 효율적인 구현은 공개키 기반 암호시스템에서 매우 중요하다. 본 논문에서는 All-One Polynomial에 의해 정의된 $GF(2^m)$ 상의 효율적인 Bit-Parallel 정규기저 곱셈기를 제안한다. 게이트 및 시간적인 면에서 본 곱셈기의 복잡도(complexity)는 이전에 제안된 같은 종류의 곱셈기 보다 낮거나 동일하다. 또한, 본 논문의 곱셈기는 아키텍처가 규칙적(regular)이어서 VLSI 구현에 적합하다.

VCG를 사용한 GF(2m)상의 고속병렬 승산기 설계에 관한 연구 (A Study on Design of High-Speed Parallel Multiplier over GF(2m) using VCG)

  • 성현경
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.628-636
    • /
    • 2010
  • 본 논문에서는 GF($2^m$)상의 표준기저를 사용한 새로운 형태의 VCG에 의한 고속병렬 승산회로를 제안하였다. 승산기의 구성에 앞서, 피승수 다항식과 기약다항식의 승산을 병렬로 수행하는 벡터 코드 생성기(VCG) 기본 셀을 설계하였고, VCG 회로와 승수 다항식의 한 계수와 비트-병렬로 승산하여 결과를 생성하는 부분 승산결과 셀(PPC)를 설계하였다. 제안한 승산기는 VCG와 PPC를 연결하여 고속의 병렬 승산을 수행한다. VCG 기본 셀과 PPC는 각각 1개의 AND 게이트와 1개의 XOR 게이트로 구성된다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 승산회로 구성의 예를 GF($2^4$)를 통해 보였다. 또한 제시한 승산기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 승산기는 VCG와 PPC을 반복적으로 연결하여 구성하므로, 차수 m이 매우 큰 유한체상의 두 다항식의 곱셈에서 확장이 용이하며, VLSI에 적합하다.

유한체 $GF(2^m)$상의 비트-병렬 곱셈기의 설계 (Design of Bit-Parallel Multiplier over Finite Field $GF(2^m)$)

  • 성현경
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1209-1217
    • /
    • 2008
  • 본 논문에서는 $GF(2^m)$ 상에서 표준기저를 사용한 두 다항식의 곱셈을 비트-병렬로 실현하는 새로운 형태의 비트-병렬 곱셈기를 제안하였다. 곱셈기의 구성에 앞서, 피승수 다항식과 기약다항식의 곱셈을 병렬로 수행 한 후 승수 다항식의 한 계수와 비트-병렬로 곱셈하여 결과를 생성하는 VCG를 구성하였다. VCG의 기본 셀은 2개의 AND 게이트와 2개의 XOR 게이트로 구성되며, 이들로부터 두 다항식의 비트-병렬 곱셈을 수행하여 곱셈 결과를 얻도록 하였다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 곱셈회로 구성의 예를 $GF(2^4)$를 통해 보였다. 또한 제시한 곱셈기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 곱셈기는 VCG의 기본 셀을 반복적으로 연결하여 구성하므로, 차수 m이 매우 큰 유한체상의 두 다항식의 곱셈에서 확장이 용이하며, VLSI에 적합하다.

유한체상의 자원과 시간에 효율적인 다항식 곱셈기 (Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m))

  • 이건직
    • 디지털산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

기약 AOP를 이용한 GF(2m)상의 낮은 지연시간의 시스톨릭 곱셈기 (Low Latency Systolic Multiplier over GF(2m) Using Irreducible AOP)

  • 김기원;한승철
    • 대한임베디드공학회논문지
    • /
    • 제11권4호
    • /
    • pp.227-233
    • /
    • 2016
  • Efficient finite field arithmetic is essential for fast implementation of error correcting codes and cryptographic applications. Among the arithmetic operations over finite fields, the multiplication is one of the basic arithmetic operations. Therefore an efficient design of a finite field multiplier is required. In this paper, two new bit-parallel systolic multipliers for $GF(2^m)$ fields defined by AOP(all-one polynomial) have proposed. The proposed multipliers have a little bit greater space complexity but save at least 22% area complexity and 13% area-time (AT) complexity as compared to the existing multipliers using AOP. As compared to related works, we have shown that our multipliers have lower area-time complexity, cell delay, and latency. So, we expect that our multipliers are well suited to VLSI implementation.

XTR을 가장 효율적으로 구성하는 확장체 (The Most Efficient Extension Field For XTR)

  • 한동국;장상운;윤기순;장남수;박영호;김창한
    • 정보보호학회논문지
    • /
    • 제12권6호
    • /
    • pp.17-28
    • /
    • 2002
  • XTR은 유한체 GF( $p^{6}$)의 곱셈군의 부분군의 원소를 새롭게 표현하는 방법이며, 유한체 GF( $p^{6m}$)으로도 일반화가 가능하다.$^{[6,9]}$ 본 논문은 XTR이 적용 가능한 확장체 중에서 최적 확정체를 제안한다. 최적 확장체를 선택하기 위해 일반화된 최적 확장체(Generalized Optimal Extension Fields : GOEFs)를 정의하며, 소수 p의 조건, GF(p)위에서 CF( $p^{2m}$)을 정의하는 다항식, GF($P^{2m}$)에서 빠른 유한체 연산을 실현하기 위해서 GF($P^{2m}$)에서 빠른 곱셈 방법을 제안한다. 본 논문의 구현 결과로부터, GF( $p^{36}$ )$\longrightarrow$GF( $p^{12}$ )이 BXTR을 위한 가장 효과적인 확장체이며, GF( $p^{12}$ )에서 Tr(g)이 주어질 때 Tr( $g^{n}$ )을 계산하는 것은 평균적으로 XTR 시스템의 결과보다 두 배 이상 빠르다.$^{[6,10]}$ (32 bits, Pentium III/700MHz에서 구현한 결과)

최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기 (A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.409-416
    • /
    • 2014
  • 유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 타입 I 최적 정규기저를 갖는 유한체 $GF(2^m)$은 m 이 짝수이기 때문에 어떤 암호계에는 응용되지 못하는 단점이 있다. 그러나 타입 II 최적 정규기저를 갖는 유한체의 경우는 NIST에서 제안한 ECDSA 의 권장 커브가 주어진 $GF(2^{233})$이 타입 II 최적 정규 기저를 갖는 등 여러 응용분야에 적용 되므로, 이에 대한 효율적인 구현에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 타입 II 최적 정규기저를 갖는 유한체 $GF(2^m)$의 연산을 정규기저를 이용하여 표현하여 확대체 $GF(2^{2m})$의 원소로 표현하여 연산을 하는 새로운 비트-병렬 곱셈기를 제안하였으며, 기존의 가장 효율적인 곱셈기들보다 블록 구성방법이 용이하며, XOR gate 수가 적은 저 복잡도 곱셈기이다.

유한체 GF($2^m$)상의 승산기 설계에 관한 연구 (A Design of Circuit for Computing Multiplication in Finite Fields GF($2^m$))

  • 김창규;이만영
    • 한국통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.235-239
    • /
    • 1989
  • 유한체 GF($2^m$)상에서 임의의 두 원소를 곱하는 승산기를 제시하였으며 동작과정을 단계별로 설명하였다. 본 논문에서 제시된 회로는 기준의 선형궤한 치환 레지스터를 이용한 회로가 변형된 형태로서 m단 궤환치환 레지스터, m-1개의 플립플롭, m개의 AND게이트, 그리고 m-입력 XOR 게이트로 구성되며 회로가 간단하다. GF($2^m$)의 두 원소를 곱할 때, 기존의 치환 레시스터 승산기는 m번 치환하면 곱셈의 결과가 레지스터에 축적되므로 m클럭시간 만큼 지연되는 반면 제안된 승산기는 입력되고부터 직렬출력을 얻을 때까지 m-1 클럭시간이 소요되며 cellular-array 승산기에 비해 매우 간단하고 systolic 승산기에 비해서는 지연시간도 단축된다.

  • PDF