• Title/Summary/Keyword: Finite Element-Transfer Stiffness Coefficient Method

Search Result 34, Processing Time 0.023 seconds

Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석)

  • 문덕홍;최명수;강화중
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

Free Vibration Analysis of Axisymmetric Cylindrical Shell by Sylvester-Transfer Stiffness Coefficient Method (실베스터-전달강성계수법에 의한 축대칭 원통형 셸의 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.46-55
    • /
    • 2013
  • In this paper, the computational algorithm for free vibration analysis of an axisymmetric cylindrical shell is formulated by the Sylvester-transfer stiffness coefficient method (S-TSCM) which combines the Sylvester's inertia theorem and the transfer stiffness coefficient method. After the computational programs for obtaining the natural frequencies and natural modes of the axisymmetric cylindrical shell are made by the S-TSCM and the finite element method (FEM), the computational results which are natural frequencies, natural modes, and computational times by both methods are compared. From the computational results, we can confirm that S-TSCM has the reliability in the free vibration analysis of the axisymmetric cylindrical shell and is superior to FEM in the viewpoint of computational times.

Transient Response Analysis of Frame Structures Using the Finite Element-transfer Stiffness Coefficient Method (FE-TSCM) (유한요소-전달강성계수법을 이용한 골조 구조물의 과도응답해석)

  • 최명수;문덕홍;김성진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.674-684
    • /
    • 2002
  • In order to decrease remarkably the computation time and storage used in the direct integration method without the loss of accuracy, authors suggest a new transient analysis algorithm. This algorithm is derived from the combination of three techniques, that is, the transfer technique of the transfer stiffness coefficient method, the modeling technique of the finite element method, and the numerical integration technique of the Newmark method. In this paper, the transient analysis algorithm of a frame structure is formulated by the proposed method. The accuracy and computation efficiency of the proposed method are demonstrated through the comparing with the computation results by the direct integration method for three computation models under various excitations.

Vibration Analysis of a Rectangular Plate with Stiffeners Using the Transfer Stiffness Coefficient Method (전달강성계수법을 이용한 보강재를 갖는 사각평판의 진동해석)

  • Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.42-49
    • /
    • 2005
  • The vibration analysis of a rectangular plate with stiffeners is formulated by using the transfer stiffness coefficient method (TSCM). This method is based on the concept of the successive transmission of stiffness coefficients which are defined as the relationship between the force vector and the displacement vector at an arbitrary nodal line. In order to confirm the validity of the present method, bending vibration analysis for a rectangular plate with stiffener is carried out on a personal computer by using the present method and the finite element method (FEM). Through comparing computational results of the TSCM and the FEM, the effectivness of the TSCM from the viewpoint of computational cost, that is, computational time and storage is demonstrated.

  • PDF

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 보형구조물의 종.굽힘진동해석)

  • Moon, D.H.;Choi, M.S.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

Forced Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법을 이용한 평판 구조물의 강제진동해석)

  • 최명수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2003
  • The finite element method(FEM) is the most widely used and powerful method for structural analysis. In general, in order to analyze complex and large structures, we have used the FEM. However, it is necessary to use a large amount of computer memory and computation time for solving accurately by the FEM the dynamic problem of a system with many degree-of-freedom, because the FEM has to deal with very large matrices in this case. Therefore, it was very difficult to analyze the vibration for plate structures with a large number of degrees of freedom by the FEM on a personal computer. For overcoming this disadvantage of the FEM without the loss of the accuracy, the finite element-transfer stiffness coefficient method(FE-TSCM) was developed. The concept of the FE-TSCM is based on the combination of modeling technique in the FEM and the transfer technique in the transfer stiffness coefficient method(TSCM). The merit of the FE-TSCM is to take the advantages of both methods, that is, the convenience of the modeling in the FEM and the computation efficiency of the TSCM. In this paper, the forced vibration analysis algorithm of plate structures is formulated by the FE-TSCM. In order to illustrate the accuracy and the efficiency of the FE-TSCM, results of frequency response analysis for a rectangular plate, which was adopted as a computational model, were compared with those by the modal analysis method and the direct analysis method which are based on the FEM.

Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient (동강성계수의 전달을 이용한 축계의 비틀림진동 해석)

  • Moon, D.H.;Choi, M.S.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

A Study on the Analysis Algorithm of Time Historical Response of Straight-line Structure by the Transfer Stiffness Coefficient Method (전달강성계수법에 의한 직선형 구조물의 시간 이력응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 1999
  • This paper describes formulation for algorithm of time historical response analysis of vibration for straight-line structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark method. And this present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the straight-line structure containing crooked, tree type system. The validity of the present method compared with the transfer matrix method and the Finite Element Method for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

Vibration Analysis for a Complex and Large Lattice Type Structure Using Transfer Dynamic Stiffness Coefficient (동강계수의 전달에 의한 복잡 거대한 격자형 구조물의 진동해석)

  • 문덕홍;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.190-195
    • /
    • 1997
  • Recently it is increased by degrees to construct complex or large lattice type structures such as bridges, towers, cranes, and structures that can be used for space technology. In general, in order to analyze, these structures we have used the finite element method(FEM). In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for solving dynamic problems for these structures. For overcoming this problem, the authors have developed the transfer dynamic stiffness coefficient method(TDSCM). This method is based on the concepts of the transfer and the synthesis of the dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the dynamic stiffness coefficient. And the validity of TDSCM demonstrated through numerical computational and experimental results.

  • PDF