DOI QR코드

DOI QR Code

Transient Response Analysis of Frame Structures Using the Finite Element-transfer Stiffness Coefficient Method (FE-TSCM)

유한요소-전달강성계수법을 이용한 골조 구조물의 과도응답해석

  • 최명수 (부경대학교 기계공학부) ;
  • 문덕홍 (부경대학교 기계공학부) ;
  • 김성진 (부경대학교 대학원 제어기계공학과)
  • Published : 2002.09.01

Abstract

In order to decrease remarkably the computation time and storage used in the direct integration method without the loss of accuracy, authors suggest a new transient analysis algorithm. This algorithm is derived from the combination of three techniques, that is, the transfer technique of the transfer stiffness coefficient method, the modeling technique of the finite element method, and the numerical integration technique of the Newmark method. In this paper, the transient analysis algorithm of a frame structure is formulated by the proposed method. The accuracy and computation efficiency of the proposed method are demonstrated through the comparing with the computation results by the direct integration method for three computation models under various excitations.

Keywords

References

  1. Tedesco, J. W., Mcdougal, W. G. and Ross, C. A, 1999, Structural Dynamics Theory and Application, Addison-Wesley, California, Chap. 12 and 13.
  2. 平見尙降, 平野藤己, 山川宏, 1986, "增分傳達マトリシクス法な用いた構造物の非線型動的應答解析," 日本機械學會論文集(C), 第 52 券, 第 484 號, pp. 3168-3174.
  3. Pestel, E. C. and Leckie, F. A., 1963, Matrix Methods in Elastomechanics, McGraw-Hill, New York.
  4. 이형우, 박노길, 1998, "전달행렬법을 이용한 다단 치차계의 비틀림 진동 해석," 한국소음진동공학회지, 제 8 권, 제 3 호, pp. 504-512.
  5. 전오성, 2002, "회전축요소의 전달행렬의 이용과 진동해석," 한국소음진동공학회논문집, 제 12 권, 제 2 호, pp. 161-169. https://doi.org/10.5050/KSNVN.2002.12.2.161
  6. Rao, S. S., 1990, Mechanical Vibration(2nd ed.), Addison-Wesley, California, chap. 11.
  7. Ohga, M. and Shigematsu, T., 1987, "Transient Analysis of Plates by a Combined Finite Element-Transfer Matrix Method," Computers and Structures, Vol. 26, No.4, pp. 543-549. https://doi.org/10.1016/0045-7949(87)90002-2
  8. Petyt, M., 1990, Introduction to Finite Element Vibration Analysis, Cambridge University, New York.
  9. Dokainish, M. A, 1972, "A New Approach for Plate Vibration: Combination of Transfer Matrix and Finite Element Technique," Trans. ASME Journal of Engineering for Industry, Vol. 94, No.2, pp. 526-530. https://doi.org/10.1115/1.3428185
  10. 김태종, 2000, "유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석," 한국소음진동공학회지, 제 10 권, 제 1 호, pp. 97-106.
  11. Kumar, A. S. and Sankar, T. S., 1986, "A New Transfer Matrix Method for Response Analysis of Large Dynamic Systems," Vol. 23, No. 4, pp. 545-552.
  12. 井上貞見, 末岡淳南,藤本俊郎, 1996, "大規模構造物の時刻歷應答解析," 日本機械學會論文集(C), 第 62 卷, 第 604 號, pp. 4558-4566.
  13. 田中基入郎, 三枝省三, 1988, 振動モデルとシミュレ一ショソ, 應用技術出版, 東京, pp. 105-110.
  14. 井上卓見, 末岡淳南, 藤本俊郎, 1994, "傳達影響係數法による二次元, 三次元樹狀構造物の線形强制振動解析," 日本機械學會論文集(C), 第 60 卷, 第 572 號, pp. 1159-1166.
  15. 近藤孝廣, 綾部降, 末岡淳南, 1996, "部分構造合成法な採用した傳達剛性係數法の提案," 日本機械學會論文集(C), 第 62 卷, 第 596 號, pp. 1277-1284
  16. 문덕홍, 최명수, 1999, "강성계수의 전달을 이용한 다양한 연결부를 갖는 구조물의 진동해석," 대한기계학회논문집 A권, 제 23 권, 제 2 호, pp. 344-356.
  17. Moon, D. H. and Choi, M. S., 2000, "Vibration Analysis for Frame Structures Using Transfer of Dynamic Stiffness Coefficient Method," Journal of Sound and Vibration, Vol. 234, No.5, pp. 725-736. https://doi.org/10.1006/jsvi.1999.2970
  18. 문덕홍, 최명수, 1998, "전달강성계수법에 의한 격자형 구조물의 자유진동 해석," 한국소음진동공학회지, 제 8 권, 제 2 호, pp. 361-368.
  19. 문덕홍, 최명수, 1998, "전달강성계수법에 의한 격자형 구조물의 강제진동 해석," 한국소음진동공학회지, 제 8 권, 제 5 호, pp. 949-956.