• 제목/요약/키워드: Finite Element-Boundary Element Method

검색결과 1,337건 처리시간 0.029초

경계요소법에 의한 포물선형 인장과 비틀림을 받는 유한폭 판재의 혼합 Mode 표면균열에 대한 해석 (Analysis of Mixed Mode Surface Crack in Finite-Width Plate Subjected to Uniform Shearing by Boundary Element Method)

  • 박성완;홍재학
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.103-116
    • /
    • 1990
  • The mixed mode surface crack in finite-width plate subjected to uniform shearing has been analyzed in 3-D problem by using boundary element method. The calculations were carried out for the surface crack angles (${\alpha}$) of $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, and 75^{\circ}, $ and for the aspect ratio(a/c) of 0.2, 0.4, 0.6 and 1.0 to get stress intensity factors at the boundary points of the surface crack. For the aspect ratio of 1.0 and the surface crack angles, finite element method was used to check the results in this in this study. Comparison of the results from both method showed good agreement.

  • PDF

경계요소법에 의한 포물선형 인장과 비틀림을 받는 유한폭 판재의 혼합 Mode 표면균열에 대한 해석 (Analysis of Mixed Mode Surface Crack in Finite-Width Plate Subjected to Uniform Shearing by Boundary Element Method)

  • 박성완;홍재학
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.117-129
    • /
    • 1990
  • The mixed mode surface crack in finite-width plate subjected to uniform shearing has been analyzed in 3-D problem by using boundary element method. The calculations were carried out for the surface crack angles (${\alpha}$) of $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, and 75^{\circ}, $ and for the aspect ratio(a/c) of 0.2, 0.4, 0.6 and 1.0 to get stress intensity factors at the boundary points of the surface crack. For the aspect ratio of 1.0 and the surface crack angles, finite element method was used to check the results in this in this study. Comparison of the results from both method showed good agreement.

  • PDF

조화 가진에 의한 원통형 음향 방사기의 방사 효율 특성 (The Characteristic of Radiation Efficiency from Harmonic-excited Cylindrical Radiator)

  • 김관주;최승권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.516-523
    • /
    • 1998
  • Radiation efficiency of a cylindrical shell whose surface vibrates under harmonic distribution is investigated by theoretical solutions and Boundary Element Method. The vibration modes of a cylindrical shell is determined from experiment and is compared with the result of Finite Element Method. Harmonic vibration response of the cylindrical shell under the point excitation and the radiation phenomena from its response is analyzed by Finite Element Method and Boundary Element Method.

  • PDF

Domain Mapping using Nonlinear Finite Element Formulation

  • Patro, Tangudu Srinivas;Voruganti, Hari K.;Dasgupta, Bhaskar;Basu, Sumit
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2009
  • Domain mapping is a bijective transformation of one domain to another, usually from a complicated general domain to a chosen convex domain. This is directly useful in many application problems like shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new approach considering the domain as made up of structural elements, like membranes or trusses, is developed and implemented using the nonlinear finite element formulation. The mapping is performed in two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion of this boundary is used as boundary conditions for mapping the interior of the domain in the second stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of material properties and finite element analysis. The consistent global parameterization produced by this method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to accept this finite element structural approach for domain mapping as a good method for many purposes.

SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.623-632
    • /
    • 2018
  • In [7, 8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. Their algorithm involves an iteration and the iteration number depends on the acuracy of stress intensity factors, which is usually obtained by extraction formula which use the finite element solutions computed by standard Finite Element Method. In this paper we investigate the dependence of the iteration number on the convergence of stress intensity factors and give a way to reduce the iteration number, together with some numerical experiments.

A fourth order finite difference method applied to elastodynamics: Finite element and boundary element formulations

  • Souza, L.A.;Carrer, J.A.M.;Martins, C.J.
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.735-749
    • /
    • 2004
  • This work presents a direct integration scheme, based on a fourth order finite difference approach, for elastodynamics. The proposed scheme was chosen as an alternative for attenuating the errors due to the use of the central difference method, mainly when the time-step length approaches the critical time-step. In addition to eliminating the spurious numerical oscillations, the fourth order finite difference scheme keeps the advantages of the central difference method: reduced computer storage and no requirement of factorisation of the effective stiffness matrix in the step-by-step solution. A study concerning the stability of the fourth order finite difference scheme is presented. The Finite Element Method and the Boundary Element Method are employed to solve elastodynamic problems. In order to verify the accuracy of the proposed scheme, two examples are presented and discussed at the end of this work.

유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석 (Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method)

  • 박재학;박상윤
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

유한요소법과 경계요소법의 교호적용에 의한 와전류장 해석 (A Numerical Calculation of Eddy Current Field by Applying FEM and BEM Alternately)

  • 임재원
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권7호
    • /
    • pp.457-461
    • /
    • 2000
  • The finite element method (FEM) is suitable for the analysis of a complicated region that includes nonlinear materials, whereas the boundary element method (BEM) is naturally effective for analyzing a very large region with linear characteristics. Therefore, considering the advantages in both methods, a novel algorithm for the alternate application of the FEM and BEM to magnetic field problems with the open boundary is presented. This approach avoids the disadvantages of the typical numerical methods with the open boundary problem such as a great number of unknown values for the FEM and non-symmetric matrix for the Hybrid FE-BE method. The solution of the overall problems is obtained by iterative calculations accompanied with the new acceleration method.

  • PDF

FE-BEM을 이용한 뼈대구조물의 해석모델 개발(구조 및 재료 \circled1) (Development of the Analytical Model for Frame Structures using FE-BEM)

  • 최원;나준엽;김한중
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.246-252
    • /
    • 2000
  • This paper presents an explanatory study of combining the finite element and boundary element methods to achieve an efficient and accurate analysis of frame structure containing shear wall. This model analyzes the frame by finite element method and the shear wall by boundary element method. The purpose of this study is the specific case that boundary element is surrounded by finite element. If material properties of shear wall are relatively the very smaller than it of frame structure, the displacement shape of each node is calculated exactly. And if the solution of displacement is the larger, the displacement shape is approximated more accurately.

  • PDF

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • 제33권1호
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.