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A FINITE ELEMENT METHOD USING SIF FOR CORNER

SINGULARITIES WITH AN NEUMANN BOUNDARY

CONDITION

Seokchan Kim and Gyungsoo Woo∗,∗∗

Abstract. In [8] they introduced a new finite element method for ac-

curate numerical solutions of Poisson equations with corner singularities,
which is useful for the problem with known stress intensity factor. They

consider the Poisson equations with homogeneous Dirichlet boundary con-
dition, compute the finite element solution using standard FEM and use

the extraction formula to compute the stress intensity factor, then they

pose a PDE with a regular solution by imposing the nonhomogeneous
boundary condition using the computed stress intensity factor, which con-

verges with optimal speed. From the solution they could get accurate

solution just by adding the singular part. This approach works for the
case when we have the reasonably accurate stress intensity factor. In this

paper we consider Poisson equations defined on a domain with a concave

corner with Neumann boundary conditions. First we compute the stress
intensity factor using the extraction formular, then find the regular part

of the solution and the solution.

1. Introduction

Let Ω be an open, bounded polygonal domain in R2 and let ΓD and ΓN be
a partition of the boundary of Ω such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.
For simplicity, assume that ΓD is not empty (i.e., meas(ΓD) 6= 0). Let ν denote
the outward unit vector normal to the boundary.

As a model problem, we consider the following Poisson equation with mixed
boundary conditions: 

−∆u = f in Ω,
u = 0 on ΓD,
∂u
∂ν = 0 on ΓN ,

(1)

where f ∈ L2(Ω) and ∆ stands for the Laplacian operator. Moreover we assume
the Neumann boundary condition along two line seguments adjacent to the
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concave corner as in Figure 1.(i.e., Two line segments adjacent to the concave
corner are contained in ΓN .)

For simplicity, we assume there is only one concave corner with the inner
angle w : π < ω < 2π. We also assume ΓD 6= ∅ for simplicity. In this case the
singular function s and its dual singular function s− can be expressed by

s = s(r, θ) = r
π
ω cos

πθ

ω
, s− = s−(r, θ) = r−

π
ω cos

πθ

ω
(2)

for the model problem (1) and the unique solution u ∈ H1
D(Ω) has the repre-

sentation (see [4, 5]):

u = w + ληs, (3)

where w ∈ H2(Ω) ∩ H1
D(Ω), and η is a smooth cut-off function which equals

one identically in a neighborhood of the origin and the support of η is small
enough so that the function ηs vanishes identically on ΓD. (Here, (r, θ) is the
polar coordinate.)

The coefficient, λ, is called ‘stress intensity factor’ and can be computed by
the following extraction formula (see [4]):

λ =
1

π

∫
Ω

fηs−dx+
1

π

∫
Ω

u∆(ηs−)dx. (4)

Note that both s and s− are harmonic functions in Ω.
As observed in [8], some numerical approaches (e.g. [1, 2, 3]) use this ex-

traction formula for λ and seek the regular part w ∈ H2(Ω) from a new partial
differential equation, for example,

−∆w = f + λ∆(ηs) in Ω. (5)

Unfortunately, the results were not good enough because the input function f
was replaced by f + λ∆(ηs), etc., whose L2− norms are quite large compared
to that of f (see Lemma 2.2 in [8] ).

In [8] they introduced a new partial differential equation, whose solution is
in H2(Ω) with the same input function by simple changing of the boundary
condition. Using this partial differential equation, they suggested an efficient
algorithm to compute the numerical solution for Poisson equation with Dirichlet
boundary condition containing domain singularity.

In this paper we consider a Poisson problem with a concave corner with the
Neumann boundary condition and suggest a proper algorithm similar to that in
[8] together with some theorems. We give three results of numerical experiments,
including the standard finite element method, the dual singular function method
using the equation (5), and the one similar to that in [8]. An example will be
given in Section 4 with computational results using FreeFEM++ code ([6]).

We will use the standard notation and definitions for the Sobolev spaces
Ht(Ω) for t ≥ 0; the standard associated inner products are denoted by (·, ·)t,Ω,
and their respective norms and seminorms are denoted by ‖·‖t,Ω and |·|t,Ω. The
space L2(Ω) is interpreted as H0(Ω), in which case the inner product and norm
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will be denoted by (·, ·)Ω and ‖ · ‖Ω, respectively, although we will omit Ω if
there is no chance of misunderstanding. H1

D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

(−1, −1)

(0, 0)

(1, 1)u = 0

Ω

∂u
∂ν = 0

Figure 1. L-shape domain with a corner with a Neumann
boundary condition

2. Extraction formula and algorithms

We need a cut-off function to derive the singular behavior of the problem.
We set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω

and
B(r1) = B(0; r1),

and define a smooth enough cut-off function of r as follows:

ηρ(r) =


1 in B( 1

2ρ),

1
16{8− 15p(r) + 10p(r)3 − 3p(r)5} in B( 1

2ρ; ρ),

0 in Ω\B(ρ),

(6)

with p(r) = 4r/ρ− 3. Here, ρ is a parameter which will be determined so that
the singular part ηρs has the same boundary condition as the solution u of the
model problem, where s is the singular function which is given in (2). Note
ηρ(r) is C2.

The solution of the Poisson equation on the polygonal domain is well known
([1, 2, 5]). Given f ∈ L2(Ω), if we assume there is only one reentrant corner
with inner angle π < ω < 2π, then there exists a unique solution u and in
addition there exists a unique number λ such that

u− λs ∈ H2(Ω). (7)
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By using the cut-off function η = ηρ, we may write

u = w + ληs, (8)

with w ∈ H2(Ω) ∩H1
0 (Ω).

2.1. Extraction formula and theorems

The constant λ is referred as stress intensity factor and computed by the
following formula ([4]);

Lemma 2.1. The stress intensity factor λ can be expressed in terms of u and
f by the following extraction formula:

λ =
1

π

∫
Ω

fηs−dx+
1

π

∫
Ω

u∆(ηs−)dx. (9)

Assume that (1) has a solution u as in (8) and the stress intensity factor λ
is known, then we introduce the following boundary value problem:

−∆w = f in Ω,
w = −λs on ΓD,
∂w
∂ν = 0 on ΓN .

(10)

Note the input function f is the same as in (1) and s = s|ΓD is the restriction
of the singular function s to the boundary ΓD.

The following theorems show (10) has a regular solution. The proofs of the
following two theorems are very similar to those in [7], although the singular
function s is different. We just state them for the completeness.

Theorem 2.2. If (1) has a solution u as in (8) with the stress intensity factor
λ, then (10) has a unique solution w in H2(Ω).

Proof. First, we note (1) has a unique solution and its stress intensity factor is
λ. The uniqueness of the solution of Poisson problem also implies the following
equation has a unique solution with the stress intensity factor −λ :

−∆p = 0 in Ω,
p = −λs on ΓD,
∂p
∂ν = 0 on ΓN .

(11)

( Note p = −λs is the unique solution and the coefficient of the singular
function s is the stress intensity factor.) By adding two equations, (1) and (11),
we have the following equation:

−∆w = f in Ω,
w = −λs on ΓD,
∂w
∂ν = 0 on ΓN ,

(12)

whose solution w = u+ p belongs to H2(Ω). �
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Theorem 2.3. If λ is the stress intensity factor given by (9) with the solution
u in (1) and w is the solution of (10), then u = w + λs is the unique solution
of (1).

Proof. We only need to show u = w + λs is the solution to (1) when w is the
solution of (10). Since ∆s = 0, we have

−∆u = −∆w − λ∆s = ∆w = f.

Moreover, we have

u|ΓD = w|ΓD + λs|ΓD = −λs+ λs = 0,

and
∂u

∂ν
|ΓN =

∂w

∂ν
|ΓN + λ

∂s

∂ν
|ΓN = 0 + λ · 0 = 0.

�

2.2. Two algorithms

Now we suggest two algorithms in variational form for the solution u of the
model problem (1), say DSFM method and KL method. We use the DSFM
method for comparision with our KL method. The KL method is the modifed
algorithm for the mixed boundary problem form the one introduced in [8].

For the first algorithm we use the approximated stress intensity factor λBD
form the formula in (9) with the approximated solution obtained by standard
finite element method. Then we use input function f + λBD∆(ηs) instead of
f . For the second algorithm we use the same input function f with changed
boundary condition so that the solution has good regularity as in (10). Here we
state two algorithms;

The first algorithm : DSFM

DSFM-1: To find u ∈ H1
D(Ω) such that

(∇u,∇v) = (f, v), ∀ v ∈ H1
D(Ω). (13)

DSFM-2: Then compute λ = λBD by (9) with u.
DSFM-3: To find w ∈ H1

D(Ω) and

(∇w,∇v) = (f + λBD∆(ηs), v), ∀ v ∈ H1
D(Ω). (14)

DSFM-4: Finally set u = w + λBDηs.

The existence and uniqueness of the solution u and w in DSFM-1 and DSFM-3
is clear. Now we state the second algorithm:

The second algorithm : KL

KL-1: To find u ∈ H1
D(Ω) such that

(∇u,∇v) = (f, v), ∀ v ∈ H1
D(Ω). (15)

KL-2: Then compute λ = λBD by (9) with u.
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KL-3: To find w such that w + λBDs ∈ H1
D(Ω) and

(∇w,∇v) = (f, v), ∀ v ∈ H1
D(Ω). (16)

KL-4: Finally set u = w + λBDs.

By Theorem 2.2 and Theorem 2.3 we have the solution w ∈ H2(Ω) in KL-3
and u, in KL-4, is the solution of (1).

3. Finite Element Approximation

In this section we present the standard finite element approximation for
the algorithms considered in the previous section. Let Th be a partition of
the domain Ω into triangular finite elements; i.e., Ω = ∪K∈ThK with h =
max{diamK : K ∈ Th}. Let Vh be continuous piecewise linear finite element
space; i.e.,

Vh = {φh ∈ C0(Ω) : φh|K ∈ P1(K) ∀K ∈ Th, φh = 0 on ΓD} ⊂ H1
D(Ω),

where P1(K) is the space of linear functions on K.
Then the standard error analysis of the method in the standard norms, ‖ · ‖

and |·|1, can be carried out with a regular triangulation and continuous piecewise
linear finite element space Vh (see [8]).

Note we can find approximated solution uh using the following Algorithm.

Algorithm 1 (A1 : DSFM)

A1-1: To find uh ∈ Vh such that

(∇uh,∇v) = (f, v) ∀ v ∈ Vh. (17)

A1-2: Then compute λBD,h by

λBD,h =
1

π

∫
Ω

fηs−dx+
1

π

∫
Ω

uh∆(ηs−)dx. (18)

A1-3: To find wh ∈ Vh such that

(∇wh,∇v) = (f + λBD,h∆(ηs), v) ∀ v ∈ Vh. (19)

A1-4: Then uh = wh + λBD,hηs.

The second approximation motivated from [8] is the following.

Algorithm 2 (A2 : KL)

A2-1: To find uh ∈ Vh such that

(∇uh,∇v) = (f, v) ∀ v ∈ Vh. (20)

A2-2: Then compute λBD,h by

λBD,h =
1

π

∫
Ω

fηs−dx+
1

π

∫
Ω

uh∆(ηs−)dx. (21)
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A3-3: To find wh such that wh + λBD,hs ∈ Vh and

(∇wh,∇v) = (f, v), ∀ v ∈ Vh. (22)

A4-4: Finally set uh = wh + λBD,hs.

4. Example and Numerical results

In this section as an example we consider a Poisson problem with the mixed
boundary condition, together with the Neumann boundary condition posed on
a concave corner with an inner angle ω = 3π

2 .
Example 1. Consider the Poisson equation in (1) with mixed boundary

conditions on the L-shape domain Ω = (−1, 1)× (−1, 1) \ ([0, 1]× [−1, 0]) with
ΓN = {(0, y) ∈ R2 : −1 < y < 0}∪{(x, 0) ∈ R2 : 0 ≤ x < 1} and ΓD = ∂Ω\ΓN
(see Figure 1). This problem has a singularity at the origin (0, 0), where the
Neumann boundary conditions is satisfied with the internal angle ω = 3π

2 . More
specifically, the corresponding singular function has the form

s = r
2
3 cos(

2θ

3
).

Let η∗ = η3/4 be the cut-off function in (6) with ρ = 3/4 and choose the right-
hand side function in (1) to be

f = −∆(η∗s).

Then the exact solution of the underlying problem is

u = η∗s.

Note the solution of this problem is singular and the stress intensity factor is
exactly 1. First we compute this example by the standard finite element method
as in Table 1. Then we give the errors and convergence rates of approximated
solutions by two algorithms, (A1) and (A2), are presented in Table 2 and 3,
respectively.

h ‖E‖L2 |E|H1

1/4 6.15737E-02 ratio 8.56289E-01 ratio
1/8 1.71935E-02 1.84045E+00 4.51119E-01 0.92459
1/16 5.27518E-03 1.70457E+00 2.36558E-01 0.93131
1/32 1.56417E-03 1.75382E+00 1.22677E-01 0.94733
1/64 5.37861E-04 1.54010E+00 6.48211E-02 0.92033
1/128 1.96364E-04 1.45371E+00 3.47017E-02 0.90146
1/256 7.47953E-05 1.39251E+00 1.90075E-02 0.86844

Table 1. Standard FEM : The L2-error and H1-error
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h λBD ‖E‖L2 |E|H1

1/4 0.666579 6.53186E-02 ratio 9.06505E-01 ratio
1/8 0.860668 2.77534E-02 1.23483 5.40082E-01 0.74714
1/16 0.981446 6.73769E-03 2.04234 2.53121E-01 1.09335
1/32 0.993592 1.77880E-03 1.92135 1.34511E-01 0.91210
1/64 0.998858 4.43244E-04 2.00473 6.51405E-02 1.04610
1/128 0.999662 1.13850E-04 1.96096 3.40128E-02 0.93748
1/256 0.999946 2.81404E-05 2.01642 1.67311E-02 1.02355

Table 2. DSFM : The L2-error and H1-error

h λBD ‖E‖L2 |E|H1

1/4 0.666579 6.15737E-02 ratio 8.56289E-01 ratio
1/8 0.857109 1.55875E-02 1.98193 4.38744E-01 0.96472
1/16 0.979867 4.17363E-03 1.90101 2.24354E-01 0.96760
1/32 0.992853 1.03516E-03 2.01145 1.11783E-01 1.00507
1/64 0.998563 2.66962E-04 1.95515 5.63480E-02 0.98827
1/128 0.999544 6.86290E-05 1.95974 2.81864E-02 0.99936
1/256 0.999900 1.77735E-05 1.94909 1.40902E-02 1.00031

Table 3. Our algorithm : The L2-error and H1-error
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