• 제목/요약/키워드: Fine Aggregate Powder

검색결과 126건 처리시간 0.022초

폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구 (Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material.)

  • 권은희;안재철;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구 (A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag)

  • 임명관;박무영;정상진
    • 한국건축시공학회지
    • /
    • 제7권4호
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • 한국건축시공학회지
    • /
    • 제14권2호
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

폐콘크리트 미분말의 골재함유량에 따른 재생시멘트의 물성 (Properties of Recycled Cement by Content of Fine Aggregate from Waste Concrete Powder)

  • 배종건;권은희;안재철;박동천;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2012
  • A policy for recycling waste concrete has been extensively studied, but it is still lacking to recycle and reuse as a cementitious powder, and the property has big different depending on the aggregate rates. In this study, the amount of cement powder according to the internal properties of the aggregate were mixed. From as a result, Concrete Powder to play inside the aggregate composition of the cement composition CaO rigs that causes loss of power and strength reduction due to rising real water cement ratio will affect large.

  • PDF

굵은 골재 입형 개선이 고성능콘크리트의 충전특성에 미치는 영향 (Influence of the Improveal Grain Shape of Coarse Aggregates on Compactability of High Performance Concrete)

  • 이승한;김희중;정용욱
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.103-111
    • /
    • 2000
  • The influence of the improvement of grain shape of the coarse aggregate to the unit powder content of concrete and the fine aggregate ratio for the increase of the flowability and segregation resistance of high performance concrete was examined. According to the experimental results, flowability and compacting of concrete presents best states in the S/a which has the smallest 패야 ratio. The coarse aggregate after improvement of grain shape, that has changed from the 0.68 of spherical rate of disk shape to 0.73, led fine aggregate ratio to be down 6% (i.e from 47% to 41%). The improvement of grain shape of the coarse aggregate also led the lowest unit powder content to be down 60kg/㎥ (ie from 530kg/㎥ to 470kg/㎥). And approximate 10% of unit water content has been reduced as unit powder content was down. However, the compressive strength after the improvement of grain shape of the coarse aggregate decreased to 5% due to decrease of adhesiveness of the aggregate and cement paste.

고로슬래그 미분말에 순환골재 미분말의 입도 변화에 따른 무시멘트 모르타르의 기초적 특성 (Effect of Grading of Fine Powder obtained from Recycled Aggregates on Fundamental Properties of Slag-based Mortar)

  • 황금광;박재용;정상운;허영선;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.37-38
    • /
    • 2013
  • The fine powder obtained from the manufacturing process of recycled coarse aggregate contains unhydareted cement particles on their surface. It is believed that the alkalinity of the powder (11.0-12.5) is enough to active the slag-based composites. In this paper, the obtained powder was sieved and divided into two sizes, i.e., 0.08 mm and 0.3 mm, and added to the slag-based mortar. Results showed that the fine powder had an effect on the slump and the compressive strength of slag-based composites. With the different pH values of the powder, it could be seen that the distance between the two level powders. And found the peak 28 days compressive strength as the replacement ratio of the recycled aggregate powder changed. The findings from this study provide an indication that with achieved compressive strength, the fine powder can be used in a light weight concrete.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

고로슬래그를 사용한 재생 잔골재 모르타르의 초기강도 특성에 관한 연구 (A Study on the Early-Age Strength Properties of Recycled Fine Aggregate Mortar Using Blast Furnace Slag)

  • 심종우;이세현;서치호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. Since hydroxide ion concentration of calcium hydroxide(Ca(OH)2) ion erupted from recycled fine aggregate newly produced is over 12. In recycled fine aggregate mortar transposing and using BFS powder, calcium hydroxide(Ca(OH)2) erupted from recycled fine aggregate played a role of stimulus from the day 3 and manifestation of compressive strength was slowly increased with mortar using natural fine aggregate and showed considerable increase from the day 7.

  • PDF

폐콘크리트 미분말을 활용한 재생시멘트의 원료조합 (Raw Materials Composition of Recycled Cement from Waste Concrete Powder)

  • 권은희;안재철;박동천;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구 (Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate)

  • 나철성;최형길;김영덕;권수길;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.469-472
    • /
    • 2008
  • 본 연구에서는 경제성, 환경부하저감성 및 순환잔골재의 품질개선효과가 우수한 순환잔골재 건식생산기술로서 고속회전충격식 비중분리장치 및 원심력 미분말 집진장치 등으로 구성된 건식생산시스템을 개발하고 순환잔골재의 품질을 평가하여 성능을 검증하고자 한다. 그 결과 고속회전충격에 의한 순환잔골재의 파쇄작용, 원심력 및 질량차에 의한 미분말과 미세분진의 분리 및 집진작용, 질량차에 의한 미세립분의 분리 회수에 의해 표준입도, 절건밀도 등 순환잔골재의 품질개선에 효과가 있는 것으로 확인되었다.

  • PDF