• 제목/요약/키워드: Field Equation

검색결과 2,565건 처리시간 0.031초

단부효과를 고려한 L.I.M.의 동작특성 해석 (1) (The Analysts of PerformaneeCharacterlstics of a L.I.M. with taken into Conslderatlon of End Effects(l))

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • 제31권4호
    • /
    • pp.288-295
    • /
    • 1982
  • In this study, the characteristic equation of a double sided short stator linear induction motor, referred to as LIM excited by equivalent current sheet having linear current density was derived using Maxwell's electromagnetic field theory with its entry and exit, end effects taken into consideration. According to the treatment of several physical phenomena in the air-gap i.e. the magnetic flux density distributions, thrust-force, forward and backward travelling wave with decay, normal field, the fundamental data in this study are made reference to improve the characteristics of LIM, effectual electro-magnetic energy conversion devices.

  • PDF

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

속도미분비대칭도를 고려한 초기난류 속도장 생성방법 연구 (A Study on the Generation of Initial Turbulent Velocity Field with Non-zero Velocity Derivative Skewness)

  • 고범용;박승오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.819-822
    • /
    • 2002
  • It is necessary for the numerical simulation of 3-dimensional incompressible isotropic decaying turbulence to construct 3-dimensional initial velocity field which resembles the fully developed turbulence. Although the previous velocity field generation method proposed by Rogallo(1981) satisfies continuity equation and 3-dimensional energy spectrum, it has limitation, as indicated in his paper, that it does not produce the higher velocity moments(e. g. velocity derivative skewness) characteristic of real turbulence. In this study, a new velocity field generation method which is able to control velocity derivative skewness of initial velocity field is proposed. Brief descriptions of the new method and a few parameters which is used to control velocity derivative skewness are given. A large eddy simulation(LES) of isotropic decaying turbulence using dynamic subgrid-scale model is carried out to evaluate the performance of the initial velocity field generated by the new method. It was shown that the resolved turbulent kinetic energy decay curve and the resolved enstrophy decay curve from the initial field of new method were more realistic than those from the initial field of Rogallo's method. It was found that the dynamic model coefficient from the former was initially half the stationary value and experienced relatively short transition period, though that from the latter was initially zero and experienced relatively longer transition period.

  • PDF

스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석 (Analysis of Acoustic Propagation using Spectral Parabolic Equation Method)

  • 김국현;성우제
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.72-78
    • /
    • 1996
  • 본 논문에서는 2차원 양방향 포물선 방정식 법과 푸리에 변환을 이용하여 3차원 굴절현상 및 3차원 후방 산란파를 포함하는 $2\frac12$차원 문제를 푸는 방법에 대해 다루었다. 여기서 $2\frac12$ 차원 문제란 2차원적 해양환경 하에 3차원적 음원이 존재할 경우를 의미한다. 2차원 양방향 포물선 방정식법은 수치기법으로 깊이 방향과 수평거리 방향에 대해 각각 Galerkin법과 Crank-Nicolson법을 사용하며 수직 불연속 경계면에 의한 후방 산란파를 포함한 수평거리 의존 문제에 대해 유용한 해를 제공한다. 2차원 해양환경에서는 파수 k가 종 또는 횡 수평거리 방향과 깊이 방향에 대한 함수이므로 3차원 Helmholtz방정식 법을 이용해 스펙트럴 해를 구하여 다시 푸리에 역변환하면 최종 해를 구할 수 있다. 본 연구방법의 정확성을 시험하기 위해서 계단형 해저면을 갖는 간단한 해양환경에서 계산을 수행해 보았으며 대한해협의 특정지역에서의 3차원적 음파전달 특성을 살펴보았다.

  • PDF

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

유동과 전기장 내에서의 액체입자의 거동과 전기장이 입자의 산란에 미치는 영향에 관한 수치적 연구 (Numerical Evaluation of charged Liquid Particle′s Behavior in Fluid Flow and Electric Field and The Electric Effect on the Particle Dispersion)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.570-577
    • /
    • 2002
  • Charged liquid particle's behavior in electric and flow field was simulated to define the effect of electric field on the contact area and its dispersion. For the simulation of flow and electric field finite volume method was applied. To find out the particle's moving path in that field lagrangian equation of motion was solved by Runge-Kutta methods. We assumed that the particle was charged 10% of Rayleigh limit while the particle passing through the electrode and the particle does not have an effect on the electric field. In case of 30[Kv] of voltage charging the particles injected from the central 60% of the nozzle injection area adhere to the grounded moving plate and no dispersion occurred. Increasing the charged voltage to 40[Kv], it brought about the same phenomena as that of 30[Kv] charging except the dispersion. Voltage increasing from 30[Kv] to 40 [Kv] caused higher Coulomb force acts on the particle and it made the particle dispersion.

고온초전도 Homopolar 전동기용 계자코일의 설계 및 특성평가 (Design and Test of HTS Homopolar Motor Field coil)

  • 이재득;이상호;김호민;이언용;백승규;권영길;홍정표;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.784-785
    • /
    • 2008
  • In general, in most case of high temperature superconducting (HTS) rotating machinery, HTS field coil is rotated. HTS homopolar motor field coil is nat necessary to be rotated and the torque of motor is not strongly related with the field coil. Therefore, HTS homopolar motor has a superior mechanical stability comparing with other HTS rotating machines. These advantages can make the design of HTS field coil and cryostat much more simple. In this paper, HTS field coil was fabricated and tested. Before test, authors habe estimated the critical current of HTS field coil at 77K by simulation using FEA (Finite Element Analysis) software and power law equation. The experiment details and results are presented in this paper, and discussed. The field windings are made with HTS Bi-2223 wire which operates at 77K.

  • PDF

웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측- (An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field-)

  • 이덕주;전완호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.