DOI QR코드

DOI QR Code

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Laosiritaworn, Wimalin (Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University)
  • Received : 2014.07.09
  • Accepted : 2014.11.17
  • Published : 2014.12.31

Abstract

In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

Keywords

References

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1997).
  2. J. F. Scott, Ferroelectric Memories, Springer-Verlag, Berlin (2002).
  3. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. H. Sun, and E. E. Fullerton, J. Phys. D-Appl. Phys. 35, R157 (2002). https://doi.org/10.1088/0022-3727/35/19/201
  4. M. L. Plumer, J. v. Ek, and D. Weller, The Physics of Ultra-High-Density Magnetic Recording, Springer-Verlag, Berlin (2001).
  5. J.-S. Suen, M. H. Lee, G. Teeter, and J. L. Erskine, Phys. Rev. B 59, 4249 (1999).
  6. W. Y. Lee, B. C. Choi, Y. B. Xu, and J. A. C. Bland, Phys. Rev. B 60, 10216 (1999). https://doi.org/10.1103/PhysRevB.60.10216
  7. W. Y. Lee, A. Samad, T. A. Moore, J. A. C. Bland, and B. C. Choi, Phys. Rev. B 61, 6811 (2000). https://doi.org/10.1103/PhysRevB.61.6811
  8. M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550 (1995).
  9. B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847 (1999). https://doi.org/10.1103/RevModPhys.71.847
  10. C. N. Luse and A. Zangwill, Phys. Rev. E 50, 224 (1994). https://doi.org/10.1103/PhysRevE.50.224
  11. R. Yimnirun, A. Ngamjarurojana, R. Wongmaneerung, S. Wongsaenmai, S. Ananta, and Y. Laosiritaworn, Appl. Phys. A 89, 737 (2007). https://doi.org/10.1007/s00339-007-4156-9
  12. R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, and Y. Laosiritaworn, Appl. Phys. Lett. 90, 112906 (2007).
  13. N. Wongdamnern, A. Ngamjarurojana, Y. Laosiritaworn, S. Ananta, and R. Yimnirun, J. Appl. Phys. 105, 044109 (2009). https://doi.org/10.1063/1.3086317
  14. A. Punya, R. Yimnirun, P. Laoratanakul, and Y. Laosiritaworn, Physica B 405, 3482 (2010). https://doi.org/10.1016/j.physb.2010.05.028
  15. Y. Laosiritaworn, K. Kanchiang, and R. Yimnirun, Ferroelectrics 425, 72 (2011). https://doi.org/10.1080/00150193.2011.634754
  16. C. Serpico and C. Visone, IEEE Trans. Magn. 34, 623 (1998). https://doi.org/10.1109/20.668055
  17. W. Laosiritaworn, R. Yimnirun, and Y. Laosiritaworn, Key Eng. Mat. 421, 432 (2010).
  18. W. Laosiritaworn, A. Ngamjarurojana, R. Yimnirun, and Y. Laosiritaworn, Ferroelectrics 401, 233 (2010). https://doi.org/10.1080/00150191003677064
  19. W. Laosiritaworn, N. Wongdamnern, R. Yimnirun, and Y. Laosiritaworn, Ferroelectrics 414, 90 (2011). https://doi.org/10.1080/00150193.2011.577313
  20. W. Laosiritaworn, S. Wongsaenmai, R. Yimnirun, and Y. Laosiritaworn, Int. J. Phys. Sci. 6, 5996 (2011).
  21. J. Faiz and S. Saffari, Electromagnetics 30, 376 (2010). https://doi.org/10.1080/02726341003712657
  22. W. Laosiritaworn and Y. Laosiritaworn, IEEE Trans. Magn. 45, 2644, 4957795 (2009).
  23. W. Laosiritaworn and Y. Laosiritaworn, Polyhedron 66, 108 (2013). https://doi.org/10.1016/j.poly.2013.02.071
  24. J. E. Dayhoff, Neural Network Architectures: An Introduction, Van Nostrand Reinhold, New York (1990).
  25. K. Swingler, Applying Neural Networks: A Practical Guide, Academic Press, London (1996).
  26. M. Suzuki and R. Kubo, J. Phys. Soc. Jpn. 24, 51 (1968). https://doi.org/10.1143/JPSJ.24.51
  27. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge (1992), 2nd edn.
  28. C. A. O. Nascimento, R. Giudici, and R. Guardani, Comput. Chem. Eng. 24, 2303 (2000). https://doi.org/10.1016/S0098-1354(00)00587-1