• 제목/요약/키워드: Field Equation

검색결과 2,557건 처리시간 0.031초

ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO THE GOLAB-SCHINZEL EQUATION

  • Gordji, Madjid Eshaghi;Rassias, Themistocles M.;Tial, Mohamed;Zeglami, Driss
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.387-398
    • /
    • 2016
  • Let X be a vector space over a field K of real or complex numbers and $k{\in}{\mathbb{N}}$. We prove the superstability of the following generalized Golab-Schinzel type equation $f(x_1+{\limits\sum_{i=2}^p}x_if(x_1)^kf(x_2)^k{\cdots}f(x_{i-1})^k)={\limits\prod_{i=1}^pf(x_i),x_1,x_2,{\cdots},x_p{\in}X$, where $f:X{\rightarrow}K$ is an unknown function which is hemicontinuous at the origin.

Series Solution of High Order Abel, Bernoulli, Chini and Riccati Equations

  • Henk, Koppelaar;Peyman, Nasehpour
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.729-736
    • /
    • 2022
  • To help solving intractable nonlinear evolution equations (NLEEs) of waves in the field of fluid dynamics we develop an algorithm to find new high order solutions of the class of Abel, Bernoulli, Chini and Riccati equations of the form y' = ayn + by + c, n > 1, with constant coefficients a, b, c. The role of this class of equations in NLEEs is explained in the introduction below. The basic algorithm to compute the coefficients of the power series solutions of the class, emerged long ago and is further developed in this paper. Practical application for hitherto unknown solutions is exemplified.

BIVARIATE NUMERICAL MODELING OF THE FLOW THROUGH POROUS SOIL

  • S. JELTI;A. CHARHABIL;A. SERGHINI;A. ELHAJAJI;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.295-309
    • /
    • 2023
  • The Richards' equation attracts the attention of several scientific researchers due to its importance in the hydrogeology field especially porous soil. This work presents a numerical method to solve the two dimensional Richards' equation. The pressure form and the mixed form of Richards' equation are solved numerically using a bivariate diamond finite volumes scheme. Euler explicit scheme is used for the time discretization. Different test cases are done to validate the accuracy and the efficiency of our numerical model and to compare the possible numerical strategies. We started with a first simple test case of Richards' pressure form where the hydraulic capacity and the hydraulic conductivity are taken constant and then a second test case where the hydrodynamics parameters are linear variables. Finally, a third test case where the soil parameters are taken according the Van Gunchten empirical model is presented.

적분법을 이용한 전력용 변압기의 손실 해석법 연구 (Investigation of Loss Analysis Method using Integral Equation Method for Power Transformers)

  • 배병현;이승욱;최종웅;박석원
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.489-494
    • /
    • 2013
  • In analysis of power transformer loss using calculation of magnetic field, Finite element method is commonly used. When using this method, calculation of magnetic field needs the very large number of elements and the performance of common work station is not sufficient to calculate the magnetic fields. In addition, the definition of boundary conditions may arise. However, When using Integral equation method, only ferromagnetic materials need to be modeled, since the domain is infinite. All the space in which the primary and secondary sources exist is regarded as free(${\mu}={\mu}_0$).

연안역에서의 비선형 파낭 분산모형 (Nonlinear Dispersion Model of Sea Waves in the Coastal Zone)

  • Pelinovsky, Efim N.;Stepanyants, Yu.;Talipova, Tatiana
    • 한국해안해양공학회지
    • /
    • 제5권4호
    • /
    • pp.307-317
    • /
    • 1993
  • 파랑의 비선형성 및 분산을 고려한, 연안역에서의 파랑변형에 관한 연구를 수행하였다. 규칙파의 변형에 관한 수학적 모형은 비선형 ray모델에 기초하였으며, ray 및 파동장에 관한 방정식들을 수립하였다. 비선형 파동장은 수정 Korteweg-de Vries 식으로서 나타내었으며, 이에 대한 몇몇 해석 해들을 구하였다. 또한 Caustic 변형 및 감쇄효과를 수학적 모형에 포함하였다. Korteweg-de Vries 방정식에 대한 수치계산 알고리즘과 안정조건을 기술하였으며, 연안역에서의 비선헝 파랑변형 계산 결과를 제시하였다.

  • PDF

모래지반에서 쐐기모델을 이용한 단말뚝의 극한수평저항력 산정 (Evaluation of Ultimate Lateral Resistance for Single Pile Using Strain Wedge Model in Sand)

  • 김지성;강기천
    • 한국지반공학회논문집
    • /
    • 제32권12호
    • /
    • pp.15-22
    • /
    • 2016
  • 본 연구에서는 Strain wedge 해석모델을 이용하여 수평하중이 작용하는 단말뚝의 극한수평저항력 산정식을 제안하였다. 저항특성은 쐐기 후면부의 수평저항토압, 쐐기 측면부의 전단저항, 그리고 말뚝과 지반의 마찰저항으로 구분하였고, 이들의 합으로써 극한수평저항력을 산정하였다. 제안된 식을 기존의 쐐기 이론과 현장실험, 유한차분법과비교 분석하였다. 그 결과 제안식의 값이 기존의 쐐기 이론과 1.03%, 현장실험과는 0.40~3.32%, 유한차분법과는 6.02%의 차이를 보였다.

Electrical Quadruple Layer under the AC Electric Field

  • Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.167-176
    • /
    • 2006
  • In this paper we show that solutions of the nonlinear Nernst-Planck equation possesses the quadruple-layer structure near the interface when the electrolyte receives a high frequency forcing such as a high-frequency alternating current. Very near to the interface wall, the well-known, classical Stern layer exists. Near to the Stern layer we have the secondly thin layer (to be called inner layer in this paper) where the ion concentrations behave under the same frequency as the external forcing. However, in this layer, the positive and negative ion concentrations develop with the time phase 180-degree different from each other. Next to this second layer, we have the third layer (called middle layer) in which two ion concentrations change with the time period double the forcing, and both concentrations behave in the same time phase. In the outermost layer, i.e. the forth layer, (called outer layer) the ion concentrations show the same-phase development as the third one but decaying very slowly in time. Our assertion is mostly based on the 1-D numerical simulation for the Nernst-Planck equation under a high frequency AC field assuming that the quadruple layer is very thin compared with the length scale representative of the bulk region.

  • PDF

채널부분의 초전도 자속 흐름 트랜지스터 볼텍스 동력학 (Vortex Dynamics of Superconducting Flux Flow Transistor in a Channel)

  • 고석철;강형곤;임성훈;이종화;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.546-549
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a Matlab program.

  • PDF

판재의 소성변형 거동을 동정하기 위한 새로운 응력-변형률 모델 (New Stress-Strain Model for Identifying Plastic Deformation Behavior of Sheet Materials)

  • 김영석;팜콕트완;김찬일
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.273-279
    • /
    • 2017
  • In sheet metal forming numerical analysis, the strain hardening equation has a significant effect on calculation results, especially in the field of spring-back. This study introduces the Kim-Tuan strain hardening model. This model represents sheet material behavior over the entire strain hardening range. The proposed model is compared to other well known strain hardening models using a series of uniaxial tensile tests. These tests are performed to determine the stress-strain relationship for Al6016-T4, DP980, and CP Ti sheets. In addition, the Kim-Tuan model is used to integrate the CP Ti sheet strain hardening equation in ABAQUS analysis to predict spring-back amount in a bending test. These tests highlight the improved accuracy of the proposed equation in the numerical field. Bending tests to evaluate prediction accuracy are also performed and compared with numerical analysis results.

공력음향학을 이용한 축류홴의 삼차원 소음 해석 (Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics)

  • 김주형;김진혁;신승열;김광용;이승배
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.