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Nonlinear Dispersion Model of Sea Waves
in the Coastal Zone

A 2] JEE BER AU

Efim N. Pelinovsky*, Yu. Stepanyants*, and Tatiana Talipova*
ol dlelEs)* - f Zelshda* - eleht gle] Tupt

Abstract[1The problem of sea wave transformation in the coastal zone taking into account effects
of nonlinearity and disperison has been studied. Mathematical model for description of regular wave
transformation is based on the method of nonlinear ray theory. The equations for rays and wave
field have been produced. Nonlinear wave field is described by the modified Korteweg-de Vries equa-
tion. Some analytical solutions of this equation are obtained. Caustic transformation and dissipation
efffects are included in the mathematical model. Numerical algorithm of solution of the Korteweg-
de Vries equation and its stability criterion are described. Results of nonlinear transformation of
sea waves in the coastal zone are demonstrated.
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1. INTRODUCTION

Sea wave propagation in the coastal zone is affe-
cted by various factors. First, bottom relief that leads
to refraction of wave beams and fronts. The related
problems have received due to attention in a linear
approximation for both regular and irregular waves
(Davidan e al, 1985; Mei, 1989; Massel, 1990; Di-
ngemans, 1993). Second, wave dispersion results in
strong wave intermittence due to the difference bet-
ween phase and group velocities; it is often taken
into account for waves in the coastal zone using
the well-known Berkhoff model or its modifications
(Berkhoft, 1976; Booij, 1981; Kozlov and Pelinovsky,
1989; Mei, 1989; Massel, 1990; Madsen e al., 1991,
Dingemans, 1993). Third, dissipation in a bottom
boundary layer and in the region of breaking which
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is usually taken into consideration by means of va-
rious empirical relations (Davidan er al, 1985; Mei,
1989; Leontjev, 1989; Massel, 1990). Finally, an im-
portant factor is nonlinearity that changes the spect-
ral composition of waves and facilitates wave brea-
king. The effect of nonlinearity on water waves was
considered, in its most pure form, by Stoker (1957)
and Whitham (1974) who, generally, omitted the
specific marine aspects of the problem.

Linear transformation of sea waves in the coastal
zone, except a relatively narrow run-up region, is
usually calculated within an energy balance equa-
tion that is valid for both regular and irregular wa-
ves (Davidan et al, 1985; Mei, 1989; Massel, 1990;
Nekrasov and Pelinovsky, 1992). In the first case,
in the absence of dissipation, this equation reduces
to the conservation of energy flux along the ray
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beam, while in the second case, to the conservation
of spatial spectrum of waves along the beam. With
nonlinearity taken into account, statistical indepen-
dence of spectral wave components is no longer
valid and is connected with strong synchronization
of harmonics in shallow water. Substantial changes
in the wave profile, including its breaking, is a good
illustration of effects of synchronization. Conseque-
ntly, nonlinear sea waves are considered to be regu-
lar as a rule.

This paper is concerned with analytical and nu-
merical analysis of regular-wave transformation ta-
king into account nonlinearity and dispersion in
the coastal zone using nonlinear ray method deve-
loped by Shen (1975) and Ostrovsky and Pelinovsky
(1975). This method enables one to obtain known
relations for the construction of rays-trajectories of
the wave packet motion-in the framework of a li-
near theory of shallow water, as well as a nonlinear
evolution Korteweg-de Vries eqution for the wave
field propagating along “linear” rays. Of particular
interest is the description of nonlinear field at caus-
tics and at focal points. It will be shown that linear
models are quite sufficient for the description of
caustic transformation of a nonlinear field. Test
examples demonstrating the variability of sea waves
in the coastal zone are presented.

2. NONLINEAR RAY METHOD

Basic equations for nonlinear dispersion water
wave theory may be derived in different ways: emp-
loying asymptotic methods, Galerkin procedures,
etc. (Stoker, 1957, Whitham, 1974; Engelbrecht er
al, 1988; Mei, 1989). Analysis is, as a rule, confined
to first-order expansion terms with respect to dispe-
rsion and nonlinearity, and the corresponding
equations are written in the form (Peregrine, 1967):
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Note that such equations may be written for wave

processes of arbitrary amplitude, given small disper-
sion, (Su and Gardner, 1969; Zheleznyak and Peli-
novsky, 1985) which seems to be promising for the
description of run-up zone too. Since the wave am-
plitude is small when the waves are present far from
shore line, we can restrict ourselves to the system
of Eq. (1). It is convenient to pass from system (1)
over to a single wave equation for water level in
linear (left-hand) side:

3—?} —divle*'vnl = Q
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where c=\/g7, and A(x, y) is an unperturbed depth
of the basin. Assuming |VA|<1 and analyzing the
waves moving only in one direction, we can intro-
duce instead of time ¢ the variable s=t(®—1, with
© determined below in the text. In the new variables,
Eq. (2) will take on a form
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So as to determine unambiguously all the terms
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of this equation we will employ some physical assu-
mptions. Assume that the curvature radius of the
wave front is large (a quasiplane wave approxima-
tion) and the depth varies slowly (mild bottom
slope). Then it is natural to regard that the solution
depends primarily on one coordinate, s, and #-depe-
ndence is weaker. Consequently, the terms contai-
hing second-order derivatives and the squares of
first-order derivatives with respect to the slow coor-
dinate r may be neglected in Eq. (3) in the first
approximation. Then Eq. (3) can be written as two
independent equations:

(Voy=c*=(@gh)", @
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Eq. (4) is well known in the linear theory of long
waves. It is an eikonal equation that allows for the
calculation of wave trajectories(rays). It should be
emphasized that equation contains only local ocean
depth and hence in this approximation the ray pic-
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ture does not depend on wave dispersion and non-
linearity. The procedure for the calculation of rays
is well known. Because Eq. (4) is nonlinear partial
differential equation of first order, it can be treated
in general way by using the method of characteris-
tics. Let y(x) represent a particular ray, correspon-
ding equation for it can be obtained from Eq. (4)
in the following form (see, for example, Mei (1989)
and Dingemans (1993)):

] .
%(ﬁ)ZVH(%)%’ ©
dx

as a conclusion of the Fermats principle. Now
many numerous computer programs for the calcu-
lation of rays are available.

Therfore, we will omit them and pass over direc-
tly to Eq. (5). Because nonlinearity is small we can
express flow velocity in the right-hand side of Eq.
(5) by means of formulas from a linear theory of
long waves: @ =7n/c where 7 is a unit vector in
the propagation direction, along a ray. Using rays
as a reference coordinate system, after a series of
simple transformations used in linear ray theory,
Eq. (5) may be written in the form
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Here [ is the distance along the ray, A is the ray
separation factor(the differential width of the ray
beam), which is the distance between two neighbo-
ring rays, and s is the time in the co-moving coor-
ding using availble ray programs. Eq. (7) is a modi-
fication of the Korteweg-de Vries equation and tra-
nsforms into the latter at a constant depth of the
basin and a plane wave front. Eq. (7) was obtained
by Ostrovsky and Pelinovsky (1970) and Johnson
(1972) for one-dimensional case and by basic equa-
tion for the description of evolution of tsunami wa-
ves in the coastal zone (Pelinovsky, 1982; Voltzinger
et al, 1989). Its application to wind waves needs
some modifications and adoptation which will be
discussed below.

It should be noted that, with nonlinearity and
dispersion neglected, Eq. (7) yields the relation of
energy flux conservation

n°h'2A=const ®)

which, in the transition to the wave height H, gives
a known Green’s law

H=Hyh/he) "N/ Ag)~ 1 )

where Hy, ho, and A, are initial parameters of the
corresponding quantities.

Mention should also be made of conservation
laws for Eq. (7). It is known that there exists an
infinite number of conservation laws for the Korte-
weg-de Vries equation, which is indicative of its full
integrability (Whitham, 1974). A modified Korteweg-
de Vries equation (7) possesses only two conserva-
tion laws:

B“AV2 (s, Dds=const (10)
and

h”zAfn(s, I)ds=const (1D

which indicates that the energy and momentum are
constant(integrals are taken with respect to period
of wind waves). The first intergral is trivial: mean
and unperturbed values of the water level coincide,
while the second integral enables one to obtain
analytical expressions for the variations in the wave
height in the coastal zone, provided some supposi-
tions on the wave shape are made. Thus, if the
wave persists to be quasi-sinusoidal, its amplitude
changes according to the Green’s law; and if the
wave is close to a periodic sequence of solitons,
its amplitude is determined from a “nonlinear”
analog of the Green’s law(Ostrovsky and Pelinov-
sky, 1975):

H=Hh/he) (A/A)™? (12

With a sufficiently slow(adiabatic) depth variation,
which is true when the last term in Eq. (7) is small
compared to the other terms, the wave is smoothly
transformed as a cnoidal wave and its parameter
variation was calculated by Ostrovsky and Pelinov-
sky (1970, 1975). Finally, the last analytical example
emerges if the effect of dispersion is neglected (Ost-
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rovsky and Pelinovsky, 1975; Pelinovsky, 1982). 1n
this case, Eq. (7) is transformed into an equation
for a simple wave:

o 30 n
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Eq. (13) has an exact analytical solution
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where {() is the wave profile at the initial point.
Using Eq. (14) one can determine the distance at
which the wave will break. This case corresponds
to On/ot vanishing to the infinity. In particular, if
the wave propagates on a plane slope, it will break
at the depth:

ha="ho{1+ar/2nHy} %2, (15)

This expression is valid if the wave breaks sufficie-
ntly far from the shore line.

The analytical examples presented here may be
used(see the text below) for tests in working out
numerical methoc}s of integration of Eq. (7).

3. WAVE TRANSFORMATION AT
CAUSTICS

When analysing wind wave transformation one
must bear in mind the following significant circum-
stance. The formulas presented above are valid only
when the rays do not intersect (A dose not turn
to be zero). Such situations are typical in the coastal
zone with simple geometry(straight and parallel de-
pth contours) when the wave is moving in the re-
gion of decreasing depth. If the moving wave en-
counters regions of increasing depth, the rays will
intersect due to refraction, thus forming caustics.
The solution of linear problem of monochromatic
wave field near smooth caustic is well known(see,
for example, Mei (1989)). It shows that after passing
caustics waves do not change in amplitude but do
in phase on n/2. As a result, the form of periodical
wave must change and it can be obtained by Fou-
rier-superposition of monochromatic solutions. Cor-

responding formulae(Hibert transformation) is easily
obtained in the frame of linear theory

NS, l):% f Nu(T. Ncot oxs —T)dt (16)

We have developed a method for the calculation
of the nonlinear wave field in caustic regions (Peli-
novsky, 1982; Engelbrecht e al, 1988), which used
linear solution in very narrow caustic zone having
the size of order wave length. Weak nonlinear cor-
rections to Eq. (16) are obtained in Engelbrecht e
al, (1988).

Egs. (7) and (16) together with equations for rays
make a complete system of equations of a nonli-
near-ray theory of sea wave transformation in the
coastal zone.

4. ACCOUNT OF DISSIPATION

To verify the practicability of the proposed model,
consider the problem taking into account wind
wave dissipation in the breaker zone. Wind waves
are usually damped intensively in this region, and
their energy consumed on transportation of sedi-
ment as well as on generation of storm surge and
nearshore circulation. Theoretical models for the
description of wind wave dissipation are rather di-
versified and are not quite reliable. With dissipation
taken into account, Eq. (7), in a most general form,
is modified as follows:

Lnan k oM | ek dhA?)
‘/" 2ha 6g632+4hA2 dl

——f Fj (17)

We will describe a series of model theoretical exp-
ressions for wave dissipation. In the simplest mo-
dels, the viscosity of water is taken into account
by a dissipative force-friction:

v

g

(18)
where v is molecular or turbulent viscosity of water.
Since the flow under water crest is turbulent as a
rule, the force of friction is approximated by the
Chézy formula

Fp = peninl/2h/gh. 19
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where p is an empirical coefficient. Equations of
this from have been widely used in the theory of
stationary flows as applied to problems of river hy-
draulics. However, the coefficient g is not constant
for waves, which stipulates quite a hierarchy of dis-
sipation models. Such models were used by Leont-
jev (1989) for the estimation of dissipation at brea-
king. Apparently, it is most correct to describe these
process employing equations taking into account
turbulent effects. Numerous examples of applica-
tions of the corresponding technique are given in,
Voltzinger er al. (1989). This approach, however, im-
plies use of three-dimensional equations and their
numerical solution needs sufficiently powerful com-
puters. For the purpose of application it is expedient
to develop simplified models that allow for calcula-
tions on personal computers. In this case, basic
equations must be of the form of Eq. (17).
Dissipation of the third type is related to wave scat-
tering at a rough bottom (Dyatlov and Pelinovsky
(1990)):

o
os® '

Fy=—8 (20)
where 8= (ha/h)kIoh*/\/gh). with h,, being the ave-
rage height of bottom inhomogeneities and I, the
characteristic scale of the inhomogeneities. Analo-
gous expressions are sometimes used for the descri-
ption of undular bores.

The expressions for dissipative terms in Egs. (18)-
(20) do not increase the order of the differential
equation (17) and consequently, do not affect cardi-
nally the stability of developed numerical schemes.

5. NUMERICAL ALGORITHM

Our numerical modeling of wind wave transfor-
mation in the coastal zone is performed within a
physical-mathematical model based on a modified
Korteweg-de Vries equation of the form (17). It is
convenient to omit the last term in the left-hand
side of this equation and, instead, substitute

E=nM. M=(hAY)""/(hAD)", 2n

where £, and A, are the initial values of depth and
ray beam cross-section.
It is easy to see that the quantity M corresponds

to Green’s law, if nonlinearity and dispersion are
neglected. Therfore, the changes in the wave amli-
tude, {, will be readily interpreted in new variables,
these changes may be related either to joint effect
of nonlinearity and dispersion or to dissipation. We
can now write an equation for the function §

ok, K o h 0%
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Designating the coefficients as

3 h
o= - B 23)
2h0\/gh 6g/gh
Eq. (22) takes a form of a standard Korteweg-de
Vries equation with the right-hand side

K oC 8%

.+.
a T TR

=—F, (24)
The coefficients o and B are not constant here, but
they depend on the depth of the basin and on the
curvature radius of wave rays (i.c. on the cross-sec-
tion of the ray beam). Eq. (24) is the object of our
numerical modeling.

The Korteweg-de Vries equation with constant
coefficients may be solved empolying finite-differe-
nce schemes that were surveyed by Berezin (1982).
Those schemes, slightly modified, may also be used
for the solution of Eq. (24) with variable coefficients.
We will take a three-level explicit finite-difference
scheme. Derivatives with respect to / and s will be
replaced by the following differences:

0%(s; 1) g'-g¢!

al 2H @5)
3@(3; ) §}’ + 12_T€771 26)
63C(sj, 1) Q+z‘2§f+ 1 +2§;"— 1 _C;’—z @7

0s® r

In this representation s; and /, are the coordinates
of numerical mesh points, § is the value of the
function at the corresponding mesh points, while
T and H are, respectively, the temporal and spatial
steps of the numerical mesh. Eq. (24) may be repre-
sented in a finite-difference form
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] n _C'!_
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The error within which the difference equation (28)
approximates the differential equation (24) can be
determined in a differential approximation by expa-
nding individual terms in Eq. (28) using Taylor se-
ries in the neighborhood of the point s;, /, and sub-
stituting these expressions into Eq. (28). Comparison
with Eq. (24) shows that Eq. (28) approximates Eq.
(24) at a rather smooth variation of a and B with
the approximation of order T° and H* (Berezin,
1982). For Eq. (27) to reduce to Eq. (24) the stability
condition must be met besides approximation, The
stability criterion was obtained by Berezin (1982)
who linearized the difference scheme and introdu-
ced fixed coefficients. Let us replace o and B in
Eq. (28) as well as the factor § by average values
ao, Po and §. Berezin (1982) proved that the differe-
nce scheme for the solution of the Korteweg-de
Vries equation is stable if the relation

o 24

is met for the quantities T and H. It was pointed
out (Berezin, 1982) that the relation, Eq. (29), is fai-
rly exact, even minor deviations from this condition
provoke the development of instability. It should
be noted that the coefficients a and B change in
the coastal zone due to variable depth and to the
narrowing (or broadening) of the ray tube. Besides,
the wave amplitude in Eq. (28) may also vary along
the propagation path, therefore the relation, Eq. (28)
must be fulfilled along the entire path of calcula-
tions. For a relatively small step T and {~1, the
first term in the brackets in Eq. (29) is small and
the condition is simplified to the form

H<0.384T/B, (30)

This critierion may be used in most cases, except
the neighborhood of caustics and the shore-line re-
gion. These regions must, naturally, be identified
as early as at the stage of ray construction and
need alternative approaches such as those described

in section 3.

The initial conditions for Eq. (24) are specified
for [=1I, where [, is an arbitrary point on the ray,
which determines its initial location. The function

&s loy=mot) (31)

that corresponds to the record of the wave at this
poing must be known. Designate the record length
through RL. In our numerical computations we as-
sume the { function to be periodic with respect to
s(this is always possible for the functions specified
on a section) and solve a periodic problem in the
interval RL. Since in a three-level numerical scheme
the calculation of the function at the n+1 level
needs knowledge of its values at the n and n-1 le-
vels, the zero level of the mesh is filled by fixed
initial conditions at the start of computations. The
first level is determined by means of a simpler two-
level scheme with the approximation order T and
H.

Another peculiarity of the scheme is that it con-
serves to a great accuracy for F;=0 two integrals

1
h=—r j "(fc(s, s (32)

— 1 RL 2

b=—r [ 6 1 (33
Integral invariants in our computations are conser-
ved to an accuracy of 107 %. In the presence of
dissipation, the energy of wave motions is conserved
no longer. It always decreases, which does not inte-
rfere with the increase of the wave amplitude in
different portions with decreasing depth. As to the
first integral, it may be conserved for some types
of dissipation, for example, if friction is described
by expressions of the form (20). Numerical experi-
ments have confirmed these theoretical predictions.

The scheme presented above was verified on test
examples with soliton propagation in a basin of
constant depth as well as of variable depth when
Eq. (21) allows for analytical solution(these prob-
lems are of particular interest for the problems of
practical application such as the dynamics of tsu-
nami waves (Pelinovsky, 1982). Besides, the results
were compared with data of soliton hydromodeling
as well as of numerical modeling of solitons within
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more complete models (some of them were descri-
bed by Pelinovsky (1982)). Comparison was also
made with data of real observations of tsunami on
26 May, 1983 in the Sea of Japan where soli-
ton-like waves were formed. However, the latter is
only a qualitative comparison because we lack data
on the initial shape of the tsunami wave. Thus, we
arrive at a conclusion that the part of physical-ma-
thematical model that is related to the Korteweg-de
Vries equation is quite efficient and reliable. The
principal difficulties in the dissipative part of the
model are caused by insufficient knowledge of the
mechanisms responsible for dissipative processes.
We have alrcady mentioned that reliable models
must contain parts for the solution of equations
for turbulent energy. These parts, however, are not
adapted to personal computers yet. Alternative app-
roximations of dissipative terms contain marfy em-
pirical constants and are not reliable enough. The
prospects of such models may be evaluated only
from comparison with reliable experimental data.
Available model concepts of dissipative terms can
readily be realized numerically because the dissipa-
tive terms do not exceed the order of the differential
equation. In particular, if the dissipation is descri-
bed by the expression (20), it can be approximated
numerically as

Go—g' =g '+0

8,‘: 72

(34)

which is referred to as the DuFort-Frankel scheme
(MacKraken and Dorn, 1975). It is known that in
combination with Eq. (26) this scheme (neglecting
nonlinearity and dispersion) is absolutely stable
(MacKraken and Dorn, 1975). The presence of dis-
sipation also affects, in principle, the stability of nu-
merical scheme but if the dissipation is relatively
small, its effect on the stability of the scheme is
insignificant too, which was proved rigorously. Con-
sequently, the step of the numerical mesh was cho-
sen according to the criterion, Eq. (29). In other
cases, when the effect of dissipation was pronoun-
ced enough, the step in / was diminished unless
computations with different steps coincided.

6. NUMERICAL MODELING

Consider results of a series of numerical experi-
ments on the evolution of regular wind waves. A
periodic problem is readily formulated in this case.
The computations were performed for comparable
nonlinear and dispersion effects. The Ursell para-

" meter

9uhd

U=—"

35)
was a criterion in choosing the necessary situations.
(Here oy is the initial amplitude of the wave of
length A,) If the Ursell parameter is small, disper-
sion effects dominate and the wave retains almost
a sinusoidal shape. While for a large Ursell pare-
meter, nonlinear effects transform the wave profile
substantially, thus competing with dispersion effects.
It is clear from Eq. (35) that the region of moderate
values of U, that are interesting to us corresponds
to small depths of about 10 m, given the wave am-
plitude of 1 m and its period 6 s, which is typical
of wind waves, These parameters are used in our
calculations that will be presented below.

6.1 Uniform Bottom

Let the wave period be 6 s, amplitude 1 m and
the basin depth 145 m. Then, U,=40 and pronoun-
ced nonlinear effects may be expected. Fig. la depi-
cts the variation of the wave record at the initial
stage when the wave has propagated 3.6 m and
7.3 m. One can see that the wave profile changes
significantly: solitons emerge in the wave crest. The
number of solitons is determined roughly by the
Ursell number-to-12 ratio (12 being the characteris-
tic of a single soliton) and in our case is equal
to 3 like in Fig. la. The wave amplitude increases
sharply (more than two fold). Later the solitons
move with a velocity that is higher than y/gh and
depends on the soliton amplitude as was predicted
theoretically (Whitham, 1974). This motion is well
seen in Fig. 1b which displays wave records past
11 m, 15 m, and 18 m. At still greater distances,
large-amplitude solitons overtake smaller-amplitude
solitons. The wave again takes a nearly sinusoidal
shape at this moment. This process is illustrated
in Fig. 1c for the wave that has covered the distance
of 57 m. The process of recovery of initial state
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Fig. 1(a,b, ¢). Nonlinear transformation of a sinusoidal
wave in basin of const depth (#=145 m
(T=s, np=1 m). Here and in other figures
the numbers at the curves indicate the dista-
nce (in meters) passed by the wave.

(recurrence) is well known for the Korteweg-de Vries
equation and is related to its full integrability (Whi-
tham, 1974).

The given example is, on the one hand, a test
which demonstrates the effciency of the numerical
mesh for recurrence. On the other hand, it illustra-
tes pictorially the importance of taking into account
nonlinear effects in shallow waters that are one of
the sources of wave amplitude variations and the
changes of the wave shape (and the wave spectrum
consequently) in the coastal zone.

6.2 Decreasing Depths

Consider the transformation of a monochromatic
wave in the region of decreasing depth. Take as
an example the following law of depth variation:

—150
X150

he)=9—2.5[th %

1] (36)
which corresponds to smooth transitions of the
wave with a period 6 s and amplitude 1 m from
the 9 m to the 4 m depths, the size of the transition
zone being about 100 m. Wave records in “deep”
water at the distances of 30 m and 60 m from the
initial location (the distances from the center of de-
pth difference) are shown in Fig 2a. Because the
values of depth are large and the propagated path
is short, the shape of the wave changes only slightly.
As the wave enters the transition region its shape
alters substantially. This process is illustrated in Fig.
2b where wave profiles are shown at the distances
of 180 m and 210 m from the source (30 m and
60 m past the center of the transition region). The
wave amplitude € increases by 1.4 times. The Green
factor (22) must be taken into account in calcula-
tions for the real wave height n, which gives a nea-
rly 50% increase of true wave amplitude. The depth
of the trough changes too: it drops by 30% for the
{ function and by about 20% for the true variable
n. This example, in addition, illustrates the advanta-
ges of eliminating the Green factor for the interpre-
tation of the observed wave height variation that
now depends only on nonlinearity and dispersion.
Nonlinearity and dispersion are significant in shal-
low water 4 m deep while the shape of the wave
and its amplitude change strongly in the course of
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Fig. 2(a,b). Wave transition from the depth of 9 m to
the depth of 4 m (I'=6s, no=1 m).

propagation.

6.3 Account of Viscous Dissipation

We will now demonstrate the effect of viscous
dissipation caused by wave scattering at a rough
bottom. In this case, the dissipative factor is descri-
bed by Eq. (20). The effective viscosity factor is cho-
sen to be equal to §=0.1m%s, which corresponds
to turbulent viscosity. The wave period (6s) and the
basin depth (1.45 m) are taken the same as in the
case of uniform bottom to provide dominating non-
linearity. The initial stage of wave evolution at dis-
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Fig. 3(a,b). The effect of viscosity on the propagation of
a sinusoidal were at the depth of 145 m (T=6
s, m=1 m, §=0.1 m?s).

tances up to 45 m is shown in Fig. 3a. We can
see that the wave shape changes substantially and
solitons with the amplitudes amounting to double
initial values are generated in the wave. At larger
distances (Fig. 3b), the wave persists to be nonsinu-
soidal and its amplitude damps, although rather
slowly: the wave amplitude at a distance of 100 m
is only slightly smaller than its initial value. Never-
theless, direct calculation of the integral (33) shows
that the wave energy decreases by about 2.5 times.
Within a linear theory, the wave amplitude would
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decrease only by 1.5 times at the same distance.
Thus, our example demonstrates that nonlinearity
effectively competes with dispersion if we are conce-
med only with amplitude variation.

The example presented above is a model one to
a great extent. We have already mentioned that
other types of dissipation may also be taken into
account, provided that they do not exceed the order
of the KdV equation and contain the wave field
rather than its integrals, for instance, energy like
in most empirical models. We believe, however, that
the dissipative part of the model is not yet reliable
enough.

7. CONCLUSION

Let us now sum up results obtained in this paper.

1. A physical-mathematial model for wave trans-
formation in the coastal zone based on a modified
Korteweg-de Vries equation has been described. The
rays in this model are determined from a linear
theory of long waves and the wave amplitude, from
an evolution Korteweg-de Vries equation. The mo-
del is supplemented with a part that allows for the
calculation of wave transformation in the caustic
zone where the rays intersect.

2. A numerical scheme for the integration of the
Korteweg-de Vries equation with variable coefficie-
nts has been developed.

3. Wave transformation has been calculated. The
calculations show the nonlinear and dissipative ef-
fects at even and rough bottom. The model has
been tested on known analytical solutions of soliton
evolution and recurrence of periodic perturbations.
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