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Electrical Quadruple Layer under the AC Electric Field

Yong Kweon Suh *
Department of Mechanical Engineering, Dong-A University,

840 Hadan-dong, Saha-gu, Busan 604-714, Korea

In this paper we show that solutions of the nonlinear Nernst-Planck equation possesses the quadruple-layer
structure near the interface when the electrolyte receives a high frequency forcing such as a high-frequency
alternating current. Very near to the interface wall, the well-known, classical Stern layer exists. Near to the
Stern layer we have the secondly thin layer (to be called inner layer in this paper) where the ion
concentrations behave under the same frequency as the external forcing. However, in this layer, the positive
and negative ion concentrations develop with the time phase 180-degree different from each other. Next to
this second layer, we have the third layer (called middle layer) in which two ion concentrations change with
the time period double the forcing, and both concentrations behave in the same time phase. In the outermost
layer, i.e. the forth layer, (called outer layer) the ion concentrations show the same-phase development as the
third one but decaying very slowly in time. Our assertion is mostly based on the 1-D numerical simulation for
the Nernst-Planck equation under a high frequency AC field assuming that the quadruple layer is very thin
compared with the length scale representative of the bulk region.
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It is well known that a solid surface when in contact
with an electrolyte shows accumulation of ions (usually
anions) at the interface due to some reason. Because of
this, the counter ions (cations, in the usual cases) in the
electrolyte are attracted to the region very close to the
interface between the solid and liquid. Distribution of

1
ions near the interface depends on the amount of ions Stern layer I diffuse layer
adhered on the surface and also the nature of the )' bulk
electrolyte, such as PH and ion concentrations, etc. potential
Figure 1 illustrates the concept sketch of this classical b4-F=
phenomenon. -
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The thin layer called EDL(Electrical Double Layer)
is known to be composed of basically two regions. The
innermost layer is highly concentrated with the cations,
and the ions are almost motionless because of the
strong electrical force exerted from the solid wall. The
remaining layer called diffuse layer has more cations
than anions, and the ions can migrate from place to
place. Therefore when an electric field is externally
applied parallel to the interface, the mobile cations and
anions in the diffuse layer move toward the positive
and negative directions, respectively, of the external
electric field. Since more cations are distributed in the
layer than anions, the overall effect is fluid flow toward
the positive direction of the electric field. The fluid
velocity at the end of the diffuse layer is calculated by
using the well known Helmholtz-Smoluchowski
equation. Since in the microfluidc devices, the fluid is
confined in a space with small length scales, the
surrounding fluid particles is pulled immediately by the
edge velocity, and for the channel case the velocity
distribution takes a plug-type form. This effect is called
electroosmosis.

There are numerous cases where we can explain the
electrical or physical phenomena by using the EDL
concept. Included in the phenomena are electroosmosis,
electrophoresis, and di-electrophoresis, etc. These basic
phenomena play key roles in the control of the
microfluidic flows and particles manipulations, such as
fluid pumping, fluid mixing, and particle
assembly/trapping employed for a certain purpose such
as biological detection.

The electroosmosis described above is an example of
the EDL effect under a DC electric field. Very recently
however increased attentions are given to the
application of AC electric field in the microfluidic flow
and particle controls. The response of EDL to the AC is
more interesting and of course more dynamic than DC.
We can use the forcing frequency as another control
parameter, and so it is more feasible than using DC.
Further, the electrode life becomes longer with AC.
Use of metal electrodes together with AC in controlling
particle assembly in small devices were reported not
log ago. Trau et al. (1997) showed the long-range
attraction of 2um-size particles on ITO electrodes, and
they attributed such phenomenon to the hydrodynamic
force given by the induced charge on the electrode.
Green’s group (Green and Morgan, 1998 and Ramos et
al., 1998) reported separation of sub-micrometer
particles on the array of electrodes, and they

conjectured that heat gencration and subsequent
gradient of the conductivity and permittivity of the
medium may induce the hydrodynamic force which
results in the particle migration. One year later, they
introduced the concept of AC electric-field-induced
flow and electrode polarization to explain their
experimental findings and proposed a simple capacitor
model to verify the magnitude of the measured velocity.
However the predicted velocity turned out to be much
greater than the measured one. Another research group
(Scott et al., 2001) attempted to fit the data of the
Green’s group and their theoretical model (Scott et al.,
2000) without success. Later Green et al. (2002) refined
their capacitor model by introducing another parameter
representing the effect of potential drop across the
compact (Stern) layer.

Lots of experimental evidence of the AC
electroosmosis have been reported in association with
the particle migration and assembly. Wong et al. (2004)
fabricated a circular electrode surrounded by a circular
strip of counter electrode and used PIV (particle image
velocimetry) to measure the fluid velocity provided by
the AC electroosmosis. The measured velocity shows
dependence on the frequency and the electrolyte
concentration. They also demonstrated the trapping of
DNA molecules. Brown and Meinhart (2006) also
conducted DNA-concentration experiment with a very
similar electrode arrangement as Wong et al. (2004).
Their numerical results are however two orders of
magnitude greater than the measured ones and the
predicted optimum frequency, at which the velocity
becomes maximum, is also more than two orders of
magnitude smaller than the experimental results.
Several experiments on the evidence of particle
aggregation along the center of electrode strips have
also been reported (Zhou. et al., 2005, Wu et al., 2005
and Lian et al., 2006). Bhatt et al. (2005) demonstrated
the collection and concentration of latex particles and
yeast cells around the patterned electrodes. Wong et al.
(2004) review the various electrokinetic effects and
their application in biotechnology. In most cases, the
AC electroosmotic effect is naturally combined with
the di-electrophoretic effect in control of the particles
(e.g. Hoettges et al., 2003 and Gagnon and Chang,
2005).

The AC electroosmotic phenomena can be applied to
various fields of microfluidics. By using anisotropic
electrode arrays, Mpholo et al. (2003) showed that the
plug-type flow profile can be achieved in pumping
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fluid in a channel by placing two arrays of electrodes.
Studer et al. (2002) presented the fabrication method
for the pumping device using the AC electroosmosis. In
order to pump fluids by using the AC electroosmotic
effect, breaking of symmetry in the electric field
(usually by using asymmetric geometry in the shape of
electrodes themselves or in their arrays) are necessary.
Bazant and Squires (2004) and Squires and Bazant
(2005) give examples of electrode arrays for such
purposes. The AC electroosmosis can also be used in
fluid mixing. Wang et al. (2004) exhibited a turbulent-
like mixing within a chamber containing a small
conductive granule by applying DC and AC fields.
They attribute the enhanced mixing to the vortices
around the granule caused by the induced charge
electroosmosis, as predicted by Bazant and Squires
(2004). On the other hand, Wu et al. (2005) observed
asymmetric flow patterns even with the symmetric
electrode configuration, and they explained the
phenomena in terms of the asymmetric-polarization, in

which the Faraday reaction is to occur on the electrodes.

The basic ingredient of the above AC electroosmotic
phenomena is the ion transport within the EDL. So, the
very beginning point of the fundamental study on the
AC celectroosmosis should be the analysis on the ion
transport in the layer. The governing equation for the
ion transport within the EDL is the Nemst-Planck
equation, which considers the ion diffusion and the ion
migration in the dynamical system. As widely surveyed
by Bazant et al. (2004), theoretical treatment of the
Nernst-Planck equation goes back to Helmholtz. Since
then the electrical effect of the EDL on the bulk
electrolyte has been studied in terms of the
development of electrical circuit model or simply the
capacitor model representing the relation between the
accumulation of charge in the EDL and the voltage
drop across the EDL (refer to the literature given by
Bazant et al., 2004 for the old references). The very
recent theoretical touch on the Nernst-Planck equation
was initiated by the group of Bazant in MIT. They
considered the induced-charge electroosmosis around a
conducting circular cylinder and showed that various
flow patterns are possible depending on the externally
applied electric field. They then applied their analytical
method to the case of two oppositely facing planar
electrodes (Bazant et al, 2004). Their important
findings and possible applications are summarized in
Bazant and Squires (2004). They also conducted a
simple experiment for the case with a metal wire
located within a microchannel receiving AC field.
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Their capacitor model however shows deviation from
the experimental observation. On the contrary, the
model of Green et al. (2002) fits the data well. They
stress however that the physical ground of the model of
Green et al. is questionable.

In this paper we propose the quadruple-layer
structure instead of the double layer as the correct
structure of the electrokinetic thin layer near the
electrode surface. Our assertion is firstly based on the
numerical solution to the 1-D Nernst-Planck equation,
and then it is verified from the asymptotic solutions for
each layer.

2. Governing Equations

Governing equations for the concentrations are

ac'i * * *y 9 3 ze * p
VAT 5 vAC s ey v el 0))
> +u c D{ c (k T] (c ¢ ):]

b

*

e,V =—p, 3}

po=(" —c")ze 3)
where ¢ is the time [s], ¢'* and ¢’ the local
concentration of positive and negative ions, i.¢. number
of ion molecules per volume of the electrolyte solution
[1/m’}, u’ the fluid velocity vector [mys], ¢' the local
electric potential [V], p, the electric charge density
[C/m®], and x",)" the spatial coordinates [m]. Further,
D is the ion diffusivity [m%/s], z the valence of the
(symmetric) ions, e the electron charge(1.60x107"%)
[C], k, the Boltzmann constant (1.38x1072*) [J/KK], T
the temperature [K], € the diclectric constant, and &,
the permittivity of vacuum (8.85x107'2) [CYNm?].
The variables are scaled as follows; (x,y")= L(x,y),
f=tlo,u =Uu, ct=cyc*, ¢ =¢,,4, and
P, =cyzep, . Here, the reference quantities are; L the
reference length such as distance between the
electrodes [m], o the angular frequency of the AC
potential [1/s], U, the Helmholtz-Smoluchowski
velocity based on the thermal potential and the external
clectric field (£, V/ L) [m/s], ¢ the thermal
potential ( k,T/ze ) [V], Vo the amplitude of the
external AC potential applied on the pair of electrodes
[V], p the dynamic viscosity of the fluid [Ns/m’], ¢,
the bulk concentration of ions (number density) [1/m’],

¢:ef the reference potential ((L/A,)*(D/ LFa)' 12),
and 4, = ,’ssok,,T /2(::)zze2 the Debye screening
length or EDL thickness [m]. Then the equations take
the form



@170 M3 EED R k!
lnags ]
* v &g
Bct +gu-Ve =¢? [Vzci +yV. (ciV¢)] “) Cs= —;;2 (12)
£V2%=—p 5) where &5 is the dielectric constant of the Stern layer.
} ¢ The charge is given by integration of the charge density
p.=(c"=¢c) (6) over the diffuse layer

where dimensionless parameters are
y=buls =(L14,) 6112,

&=U, /oL, & =D/ o.

We are interested in the case of small &, such that
the convective terms can be neglected. We expect a thin
layer (i.e. ‘screening layer” and called EDL), which we
will call EQL in this paper, and the bulk region. lons
are expected to be neutralized in the bulk region, and so
the Laplace equation governs the potential distribution.
Vi$=0 M

For a typical example, we assume the potential
difference between the pair of electrodes, Yy =1[V]
and the reference length, L =20 [um]. Further we
assume © =100 [rad/s], D=10""" [m%s] and
T =300 [K]. For the bulk concentration, we assume
107 [M] of KCI solution. Then we get g' =26 [mV]
and y =5260. Notice that the value of y is very large
for this typical case.

To resolve the EQL, we introduce the strained
coordinate along the direction normal to the electrode
surface; n=ﬁe3Y . Then the concentration equations
and the potential equation become

ot %t o ,o¢
25 = ty—|ctE 8
a orr 7 ay(c GY) ®
o . ‘
a—yf—=—c +c )

We need boundary conditions. On the electrode surface
the current flux should vanish.

oct ¢
J+= +—= t =

37 +yc a7 0 atY=0 (10a)
- 0c” . 0¢
J=—- —= t Y=0

o7 ye o7 a (10b)

As for the boundary condition for the potential, we
employ the Stern-layer capacitor model. Let C; the
Stern-layer capacitance and Ag the Stern-layer
thickness. Then the amount of charge in the screening
layer ¢° is given by

g’ =Cs(¢" ~Vgcosr) 1
On the other hand, the capacitance C; is computed
from

(et t__ 62¢‘ . _ ?i: - i (13)
q _Iu pedn - ssof:antzdn "950[(an0]0 (Bn'ln]

where n’ =0 indicates the interface between the Stern
layer and the diffuse layer, and n’ = the outer edge
of the diffuse layer. Substituting (12) and (13) into (11)
we get

0 0
& =& l:(a—ff)o - (3—$)w:'+ Vyo cost (14)

where V,, is the scaled quantity of Vg , ie.
Voo = VJO/¢;f , and &5 =A56/ &g /\/56‘31, . The
numerator in the equation for &£ corresponds to the
equivalent thickness of the Stern layer. Note that the
gradient of the potential at the outer edge of the EQL
also participates in the boundary condition for the
potential at the inner edge of the layer.

As the boundary conditions at the outer edge of the
layer, we simply assume that the bulk concentrations
are not disturbed; ¢* =¢ =1 at Y=o . As for
condition of the potential, we assume non-zero but a
constant gradient; d¢/9Y = function of timeat ¥ =o.
Note that with zero gradient for this yields zero current
flux at the outer edge, and so no dynamic behavior of
the charge or potential is expected to occur within the
layer.

3. Asymptotic solutions of the EQL
equations for very large y

When the parameter ¥ is of order 1 or larger, the
linear solutions may not hold and we must ultimately
rely on the numerical solutions for the full EQL
equations. However in order to determine the slip
velocity at the outer edge of the EQL effectively, we
must develop a very simple formula which can be
combined with the solution in the bulk region through a
suitable interaction algorithm. In this section we
present the asymptotic solutions applicable when y is
very large.

From the beginning we must rely on the numerical
results that at very large y values, the solutions show
three kinds of distinctly different behavior at each of
three layers as shown in Fig. 2. To obtain these
numerical results we applied the following parameter



Fig. 3(a). In this layer the potential gradient @
becomes 100 times the forcing one supplied from the
bulk region; compare the magnitude of @ at Fig. 2(b)
and that at Fig. 2(d) or Fig. 3(f). However, the
evolution of @ shows the 90-degree different phase
from the forcing one. It should be also mentioned that
although the difference between ¢* and ¢ is
considerable, the magnitude of & is not so large. This
can be understood from the following equation.

oD + -

T ¢+, (15)

which can be derived from Eq. (9) and definition of @,
showing that @ is the integration result of the
difference between ¢* and ¢~ . Since the inner layer
thickness is very small, the integrated result cannot be
large even though the integrand is considerable.

In the middle layer, the evolution of each of the
three variables is as shown in Fig. 2(c), (d) and Fig.

3(b); here the development of ¢~ is the same as that of

¢* shown in Fig. 2(c) with the same phase. Both the
concentrations also show the asymptotic approach
toward 1 but the potential gradient shows almost
constant values (in fact at the same magnitude as the
forcing one). Peculiar in this layer is that the two
concentrations show almost the same behavior and that
the time period is half the forcing one as can be seen
from Fig. 3(b). Perturbed concentrations are much
smaller than those of the inner layer but much larger
then the outer layer; compare (¢* -1) in Fig. 3(b) and
the one in Fig. 3(c). In this layer the potential gradient
shows the same time-phase as the forcing one. In the
outer layer, the concentrations do not show the
harmonic motions in time, and they asymptotically
approach to 1 at infinity; see Fig. 2(e). As can be seen
from Fig. 3(c) the variation of these concentrations is
very small during one period of time. The behavior of
the potential gradient in this layer is the same as that at
the middle layer; compare Fig. 2(f) and Fig. 2(d).
Figure 4 shows the time evolution of ¢* in the outer
layer for 50 periods. The profile of ¢” is not plotted in

this figure because it is almost the same as that of ¢* in
this layer. It reveals that the evolution is purely
diffusive.

To catch the order of the magnitude in each region
we computed each term of the Nemst-Planck equation
separately and compared with each other. The results
indicate that within the inner layer the transient term is
very small and the governing equations show balance
between the ion diffusion and ion migration terms. This
implies that the inner layer has the characteristic time
very short compared with the time scale selected in this
study, i.e. 1/® . In the middle and outer layers the ion
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migration term can be neglected. The trend of above
comparison is more pronounced as y is increased.
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Fig. 3 Time series of the concentrations c*, ¢ and the
potential gradient @ at three locations; (a) Y =0, (b)
Y =0.374 and(c) ¥ =9.01.
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Based on our numerical results, we propose the
following form of approximated equations, instead of
the full equations (8), as the appropriate equations
goveming the ion transport in each of the three layers.

2
oc — ( 6¢J 0 for the inner layer  (16a)
oY aY oY

oc* 62
2— for the middle and outer layers. (16b)

ot
These equations are to be solved together with (9).

To obtain the analytic solutions of the inner layer
equations, we first multiply (9) by ® and integrate
once to get

cf+c‘=75(¢>2—cb§,)+2 (17)

where ®_ corresponds to the asymptotic value of @

at infinity. At moment we neglect this term. Then from

(16a), we derive

At -c7)
aY

Next we apply (9) and (17) to this equation to obtain

the equation for @ only as follows.

®'= ;Vrb(lz/-d)z +2)

where prime denotes 0/9Y . This can be integrated
once to give

_—J_m‘j O+ D% %cbi—-t‘bfo (18)

where the negative sign was selected considering the
asymptotic nature at infinity. Here again we neglect the
terms with @, . This then can be integrated once more

to yield
,/8/
N .2 A (19)
sinh[,/Zy T+5L0

where the integration constant Y,(¢) should be
determined from a certain restriction. The solutions for
¢* can be obtained by substituting (19) into (16a). The
results are

o Coshly27 (¥ + % ))£1
cosh[y/2y (¥ + ¥)1¥1

Now to determine the function Y;(¢), we may use the
integral relation

o aC +
2f; . dy =J; @n
which can be derived from the full equation (8), but it
turned out the ion distributions in the middle and outer
layers play important roles in the evaluation of the left-

hand side term. In order to determine Y, (f) more

+y(c"+c )P =0

(20)

practically, we rely again on the numerical results of
the full governing equations. We notice that the
behavior of @ is very closely harmonic in time as
shown in Fig. 3(a). So we assume that @ =@, sins at
Y =0. Then from (19) we readily obtain

¥, =~ sinn!| V87 22)
J2r @, sint

Substituting this into (20) results in the explicit

expression for the concentrations;

. V8/p+®y sin’t cosh(y2yY)+ /877 sinh(27Y) £ By sint
c_ =
V877 +®,Fsin?t cosh(y/2yY)+ 877 sinh(y/27¥) ¥ Dy sin¢

23)

We also have an explicit expression for @, ;

J8/y ®ysint (24
J8/7+¢0 sin t51nh(rY)+,/8/7cosh(J——Y)

Now the question is; how to determine the constant
@, ? For this we first apply the inner-layer solution (20)
to the constraint (21) to obtain

2Iw§—dY y A,'cost (25)

Substltutmg (20) into the left-hand side gives

@, sint

LHS = @, cost | | + ———————=—
V8/ 7+ @y sin’¢t

which can be written in the Fourier expansion form as

(26)

LHS = Y (a, cosnt + b, sinnt) 2n

. n=1

We can show that g =®,, a,=0(n=2,.), and
by=by=bs=..=0 . This indicates that the
requirement (25) can be satisfied only with the
fundamental mode, and the higher modes must be
treated elsewhere; in fact the remaining terms are
treated by the middle layer solutions. Then we obtain
D=y A4, -

Similarly the constraint for ¢~ is

fw o a’Y——-}/A°o cost (28)

and we end up with the following relation.

@, sint

@, cost | - 1+ e
V8/7 +®,2sin’¢

The fundamental mode results in (27) and the
remaining modes are the same as before. This means
that in the middle layer, the function ¢* should be the
same as ¢~ .

In the middle layer, the equation to be solved is (16b)

=-y A,'cost (29)



SFTAALA TS

which is linear. For a positive real constant A, we can
write the general solution as

¢ = Cexp[-AY +i(J%t - AY)]

where C is an arbitrary complex constant, and taking
the real part is assumed. The constants C and A are
determined from the following requirement.

w OC * .
2, —aTdY=—b2 sin2f+... 30)
where the higher modes are composed of terms like
sin4s etc. and in most cases these terms can be
neglected. Then we get the following as the solution of

¢* for the middle layer.
b
ct=ct +726xp(—w/5Y)cos(2t -2v+z/4) (31

Note that the constant ¢} is added to consider the
effect of the outer-layer solution.

In the outer layer, the equation to be solved is again
(16b). Existence of the outer layer comes from the
following requirement

time average of [2]: (c* -Day ] =constant  (32)

If the initial distribution of ¢* is just ¢ =1 as is the
usual case, then the constant must be zero. In fact the
inner-layer solution of ¢* shows that ¢*—1 has
significant amount of steady components as shown
from Fig. 2(a). Substituting (20) into the left-hand side
of (32) gives

1{ 1 (22 .
a0=5(§02 \/8/}’+®02Sm2tdt—,/8/yj (33)

Now the outer-layer solution must take care of this non-
zero value of a; . The general solution to (16b) having
this purpose can be written as follows.
C, exp(-n°)

V2r
where n=Y/ \/5; . The constant C; is determined
from the requirement

2[7 (¢* — Y =—a,

and get C, =—2a,//x . Then the final form of the
outer-layer solution is

ci: =1- 2a0 eXP(‘Uz)

N,

The analytical solutions in the inner, middle and outer
layer are compared with the numerical solutions in Fig.
2(a), 2(c) and Fig. 4, respectively. It is remarkable to
note that comparison is much more satisfactory than
expected. Being satisfied with the accurate prediction

=1+

(34)
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of the solutions provided by the analytical formula, our
next step is to construct an algorithm which can predict
through 2 suitable interaction scheme the true potential
drop across the EQL and simultaneously the potential
gradient at the outer edge of the EQL.

1.0002
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Fig. 4 Comparison between the numerical (solid lines) and
asymptotical solutions of ¢” within the outer layer.

5. Conclusions

We have shown, with the aid of numerical simulation, -
that the Nerns-Planck equations intrinsically contain
quadruple-layer solutions at large values of the
parameter y , when the layer is receiving AC potential.
We have encountered no problem in matching solutions
between each pair of the neighboring layers. The inner
layer is the thinnest among the three layers (excluding
the Stern layer), and in this layer the concentrations
develop in time with a strongly non-harmonic behavior.
The positive and negative ion concentrations show the
temporal behavior with the time phase 180-degree
different from each other. The potential gradient shows
however an almost harmonic behavior in this layer. In
the middle layer both the positive and negative ion
concentrations develop in the same magnitude and
same time phase, so the potential gradient does not
show spatial change in the middle layer. This layer
however shows the temporal oscillation of the
concentrations with the period double the forcing one.
This layer can be considered as a reservoir supplying to
or receiving from the inner layer the higher harmonic
components of the ion charges. The outer layer is
characterized by a slow diffusion of the excess
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concentrations which were initiated by the initial
conditions  or the non-zero steady components
developed from the beginning in the inner layer. In this
layer too, the potential gradient does not show any
spatial change, because the positive and negative ion
concentrations are the same.
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Fig. 2 Numerical results of the development of (a) ¢* in the
102} inner layer, (b) @ in the inner layer, (c) ¢* in the middle
layer, (d) @ in the middle layer, (¢) ¢ in the outer layer,
1.01 and (f) @ in the outer layer at the parameter set ¥ = 1000,
. A',=0.0001 and simple initial conditions, (44). The
o 1 number in each line indicates the time instant within one
099 period, eg “1” stands for = Tp /8 , and “2” for
’ t=2T,/8, ...etc. Dashed lines in (a) and (c) denote the
098 analytical solutions.
0.97
values; vy =1000 , A4,'=0.0001 where A, ' is the
0.0002 amplitude of the externally applied potential gradient;

@, = A4,'cost . We can see that in the inner layer, i.e.
within ¥ <0.12 approximately as shown in Fig. 2(a)
and (b), all the three variables ¢*, ¢~ and @ show
asymptotic approach toward finite values at the region
far from this layer (i.e. for the region Y >>0.12
approximately); the development of ¢~ is the same as
¢* except that there is 180-degree phase difference
between them. Each variable’s development in time in
this layer can be understood from Fig. 3(a); we can see
that they develop in time at the same period as the
forcing one. But the concentrations develop in highly
non-harmonic fashion as can be more clearly seen from



