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Abstract To help solving intractable nonlinear evolution equations (NLEEs) of waves in

the field of fluid dynamics we develop an algorithm to find new high order solutions of the

class of Abel, Bernoulli, Chini and Riccati equations of the form y′ = ayn + by + c, n > 1,

with constant coefficients a, b, c. The role of this class of equations in NLEEs is explained

in the introduction below. The basic algorithm to compute the coefficients of the power

series solutions of the class, emerged long ago and is further developed in this paper. Prac-

tical application for hitherto unknown solutions is exemplified.

1. Introduction

There is as yet no general solution f for the equation

f ′ = afn + bf + c(1.1)

where f is a function dependent on t, n > 1 is a positive integer, and a, b, and c are
given constants unequal to 0 in F of characteristic zero. The design of the equation
is by D. Bernoulli [2] with c = 0, n = 2, as studied by him to predict the effect of
smallpox vaccination. If c 6= 0, n = 2 then (1.1) is named the Riccati equation with
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constant coefficients [20], and n = 3 is a special case of the classical Abel equation
discussed on p. 24 in [8]. The importance of this equation nowadays originates
from the need in the physics of fluid dynamics to develop e.g. accurate weather
prediction, neurological implants for deaf and blind people, or control fluids in nano
capacities (for medicine administration through the brain-body blood barrier), etc.
Fluid dynamics models have the format of partial differential equations (PDEs) of
a high order, most often in the class of non-linear evolution Equations (NLEEs).
Nature often has a complicated relationship between the phase speed of traveling
waves (for instance tsunamis) and the parameters in the PDEs predicting them.
The order of an NLEE becomes higher if more precision is required, e.g. dispersion
effects are taken into account, but most often these model equations then become
unsolvable. Kudryashov [12] designed the ‘Simplest Equation Method’ (SEM) to
reduce the order of intractable partial differential equations (PDEs) by assuming a
series solution such that it solves a lower order Riccati equation.

An example of such use of a lower-order differential equation is in [9] for the
solution of otherwise unsolvable double dispersion equations, i.e. the Sharma-Tasso-
Olver (STO) equation. To glimpse other examples of the application of the work
reported in this paper is the Benjamin-Ono PDEs in [23] which hit upon a Chini
equation. Also, Chinis method is still under study in applications [17] to Gross-
Pitaevskii PDEs.

In general, the field of fluid dynamics progresses if the SEM becomes wider ap-
plicable by raising the order of the SEM. This paper gives an automated technique,
such that high order solutions become feasible for the SEM.

The main result of this paper is to aid application fields with a computer-assisted
method for symbolic differential solutions of (1.1), if a, b, and c are constants. To
this end, we devise an algorithmic i.e. a constructive, method to find series solutions
of any power n > 1, with illustrative applications from [8], [18], [21]. There is as
yet no general solution for this differential equation (1.1), if n > 1 and a, b, c are
general, i.e. non-constant.

2. Power Series Solutions

Recall the formal derivative of power series over a field F with characteristic
zero with

f = A0 +A1t+A2t
2 + · · ·+Akt

k + · · ·

an element of the power series ring F [[t]], where t is an indeterminate over F . Then
is the formal derivative f ′ of f defined as

f ′ := A1 + 2A2t+ · · ·+ (k + 1)Ak+1t
k + · · · .(2.1)

The following lemma is known for a long time (see Formula 6.361 in [1], Formula
0.314 in [5], Theorem 1.6c in [7], [14] Ch. 17 (1st edn.), and Ch. 21 (2nd edn.). We
bring it for reference.
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Lemma 1. Let F be a field of characteristic zero and
∑

∞

k=0 Akt
k a formal power

series in F [[t]] with the indeterminate t. Then for each positive integer n,

(

∞
∑

k=0

Akt
k
)n

=

∞
∑

k=0

Ckt
k,

where C0 = (A0)
n, and

Cm =
1

mA0

m
∑

k=1

(kn−m+ k)AkCm−k, for all m ≥ 1.

Optimization of computation of power series expansions has been coined JCP-
Miller Algorithm in [6]. Later publications of the algorithm are in [7], [14], [22]
though the algorithm has a long history. It was apparently known to Euler, accord-
ing to Henrici [7], p. 65, but Wimp in [22] p. 2 refers to Lord Rayleigh [19] in 1910.
Knopp [11], however, attributes it to Glaisher in 1875.

Now we prove the main theorem of this section:

Theorem 2. Let F be a field of characteristic zero and f =
∑

∞

k=0 Akt
k be a power

series solution for the differential equation (1.1)

f ′ = afn + bf + c

where n > 1 is a positive integer, and a, b, c, and A0 are given elements in F .
If C0 = (A0)

n and m ≥ 1,

Cm =
1

mA0

m
∑

k=1

(kn−m+ k)AkCm−k,

then
A1 = aC0 + bA0 + c,

and

Am =
1

m
(aCm−1 + bAm−1), for all m > 1.

Proof. Assume that a, b, c, and f(0) = A0 are given elements in F and let f =
∑

∞

k=0 Akt
k be a power series solution for the differential equation (1.1). It is clear

that f ′ =
∑

∞

k=0(k + 1)Ak+1t
k. On the other hand, by Lemma 1, a power series

raised to the power n is calculated with the formula

(

∞
∑

k=0

Akt
k
)n

=

∞
∑

k=0

Ckt
k,
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where C0 = (A0)
n and

Cm =
1

mA0

m
∑

k=1

(kn−m+ k)AkCm−k, for all m ≥ 1.(2.2)

Finally, from the differential equation (1.1), we obtain

A1 = aC0 + bA0 + c, Am =
1

m
(aCm−1 + bAm−1), for all m > 1.(2.3)

This completes the proof.

Let us recall the following Theorem 2.4.2 in [3]:

Theorem 3. (Existence and Uniqueness for First-Order Nonlinear Equations)
Let the functions f and ∂f/∂y be continuous in some rectangle n < t < β and

γ < y < δ containing the point (t0, y0). Then, in some interval t0 − h < t < t0 + h
contained in n < t < β there is a unique solution y = ϕ(t) of the initial value
problem y′ = f(t, y) and y(t0) = y0.

Corollary 4. Let a, b, and c be arbitrary real constants with a 6= 0 and let n > 1
be integer. Then, there is a unique solution y = ϕ(t) satisfying equation (1.1)

dy

dt
= y′ = ayn + by + c(2.4)

with y(t0) = y0 on an open interval of real numbers including x0.

Proof. Let us define f(t, y) = ayn + by+ c. Then it is obvious that the functions f
and ∂f/∂y are continuous and so by Theorem 3, the solution is unique.

3. Automating Power Series Solutions

The first recurrence in Theorem 2 expresses Cm,m = 0, 1, 2, . . . in terms of
a, b, c, and Am. The Am are external for this algorithm, i.e. ‘global’ in Maple’s
terminology. Rewriting this by a recursive program in the mathematical symbolic
programming language Maple, we obtain the listing below of Miller’s algorithm with
the shortcut name C.

C := proc(m,n,A0) local k; global A; option remember;

if m=0 then (A0)^n

else expand(simplify(add((k(n+1)-m)*A[k]*

C(m-k,n,A0),k=1..m)/m/A0)

end if end proc:
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Maple’s symbolic output of successive calls of Miller’s algorithm C(m, 4, A0) for
m = 0, 1, . . . , 5 is

C(0, 4, A0) = A4
0

C(1, 4, A0) = 4A3
0A1

C(2, 4, A0) = 4A3
0A2 + 6A2

0A
2
1

C(3, 4, A0) = 4A3
0A3 + 12A2

0A1A2 + 4A0A
3
1

C(4, 4, A0) = 4A3
0A4 + 12A2

0A1A3 + 6A2
0A

2
2 + 12A0A

2
1A2 +A4

1

C(5, 4, A0) = 4A3
0A5 + 12A2

0A1A4 + 12A2
0A2A3 + 12A0A

2
1A3 + 12A0A1A

2
2 + 4A3

1A2

Remark 5. The proof of Theorem 2 also holds if the assumed solution is a formal
Laurent series

∑

∞

k=q Akt
k, where q 6= 0 is an integer number and may or may not be

negative. A polynomial or power series over a field with a nonzero constant term,
i.e. A0 6= 0 is named ‘unit’ in [7]. Note that the formal Laurent series over a field
form a field again. The algorithm CLaurent is the Laurent extension of Miller’s
algorithm C at p. 55 in [7], made available in Remark 6 hereafter.

Remark 6. The recurrences (2.2) and (2.3) of Theorem 1 are such that each Am

can be expressed in terms of a, b, c, and A0, for eachm ≥ 1. Both A and C do neces-
sarily execute in this order: A0 ⇒ C0 ⇒ A1 ⇒ C1 ⇒ · · · ⇒ Am−1 ⇒ Cm−1 ⇒ Am.
The full computation is given in Theorem 2. The first two steps are A0 ⇒ C0 and
subsequently C0 ⇒ A1. Thereafter followAm = (aCm−1+bAm−1)/m, for all m > 1.

An algorithm - embedding previous tools - to find all symbolic solutions of
the equation (2.4), whenever the constants a, b, c, and A0 are given, is such that if
these constants are numerically substituted, the algorithm solves correctly Bernoulli,
Riccati, Abel as well as Chini’s equations [8]. Because of this generality, we name
our algorithm ABCR in alphabetic order of the names of the original scholars Abel,
Bernoulli, Chini and Riccati. The body of the algorithm ABCR first sets the initial
values A0, A1, C1 and thereafter it alternates - as said - between updating Ck and
Ak until the stop condition is satisfied.

ABCR := proc(a,b,c,m,n,A0) local k; global A,C;

A[0]:=A0; C[0]:=C(0,n,A0);

A[1]:=a*C[0]+b*A[0]+c; C[1]:=C(1,n,A0);

for k from 2 to m do

C[k]:=C(k,n,A0);

A[k]:=expand(simplify((a*C[k-1]+b*A[k-1])/k))

end do end proc

This algorithm has to be changed slightly if non-units solutions are needed, i.e.
the assumed power series f has A0 = 0. Then the call to Miller’s C algorithm needs
to replaced by a call to the CLaurent algorithm, as follows.
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CLaurent:=proc(m,n,q,Aq); local k,l; global A; option remember;

l:=m-n * q;

if l<0 then 0

elif l=0 then (Aq)^n

else expand(simplify(add((k(n+1)-l)*A[k+q]*

CLaurent(m-k,n,q,Aq),k=1..m)/m/Aq))

end if end proc:

4. Applications

Below we give applications by showing outputs of our ABCR algorithm.

Example 7.The solution of Bernoulli’s equation c = 0 in (2.4) is known in general

( 1

Ce−(n−1)t − 1

)
1

n−1

,

where C is a constant depending on a, b and a boundary condition y(0).
For the particular case y′(t) = (y(t))2 + y(t), y(0) = 1, let n = 2, a = 1, b =

1, c = 0 in (1.1), and collate the known solution

1

2e−t − 1
= −

1

2
(1 + coth(

t

2
−

1

2
ln(2)))

to the result below, by executing ABCR(1, 1, 0, 7, 2, 1) : by Maple. This gives the
coefficients of the series solution by seq(Akt

k, k = 0 . . . 7);. The output is the exact
sequence of coefficients of expansion of the known solution.

1, 2t, 3t2,
13

3
t3,

25

4
t4,

541

60
t5,

1561

120
t6,

47293

2520
t7, . . .

Example 8. All test cases in the table below, taken from the literature, give corect

results:

n a b c y(0) reference

2 1 1 0 1 example 7 above
2 −1 1 0 1/2 example 4 in [4]
3 1 1 0 1 example 3.1 in [10]
2 −1 −2 −1 1/2 example 1 in [15], [16]
2 1 −2 1 2 example 4.1 in [10]

Example 9. Solution of an hitherto unknown Chini equation with n = 9, a =
1, b = 1, c = 1 in (1.1):

1, 3t,
15

2
t2,

61

2
t3,

1061

8
t4,

23917

40
t5,

133105

48
t6,

22012957

1680
t7, . . .

.
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Example 10. Execution of the Laurent version of the algorithm

seq(CLaurent(m, 4, 1, A1),m = 0 · · · 7)

on a truncated non-unit series for a fourth order equation, for example with
q = 1, hence A1 6= 0, and a1t + a2t

2 + · · · + a7t
7. The Claurent algorithm gives

coefficients of Cm,m = 0 . . . 7, as follows.

0, 0, 0, 0, A4
1, 4A

3
1A2, 4A

3
1A3 + 6A2

1A
2
2, 4A

3
1A4 + 12A2

1A2A3 + 4A1A
3
2.

5. Conclusion

An advantage of our method for equations with constant coefficients is the result
of a series expansion without effort to analyse whether it has periodic solutions, or
not. Our method grants solutions of all types. The series of solutions are obtained
by the property discovered by Euler: a particular solution f1 generates a series of
solutions u via the substitution f = u+ 1/f1.

For the molten slag problem in metallurgy - a special case of the celebrated
NLEEs in fluid flow dynamics - no general solution for the slag temperature y(t)
flowing out of the furnace was found thus far, see [13]. Our method solves this prob-
lem in full generality. The slag outflow temperature is fully known and predictable
by our symbolic output. Our result is new to this metallurgy application field.

Also, by our method, we generate the needed expansion of the solution of
Kudryashov’s [12] SEM (Simplest Equation Method), to simplify otherwise in-
tractable partial differential equations (PDEs) in the fluid dynamics field.

The technique is general, easy to implement via the two algorithms above, and
yields exact expansion results.
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