• Title/Summary/Keyword: Feynman integrals

Search Result 37, Processing Time 0.022 seconds

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

GENERALIZED ANALYTIC FEYNMAN INTEGRALS INVOLVING GENERALIZED ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND GENERALIZED INTEGRAL TRANSFORMS

  • Chang, Seung Jun;Chung, Hyun Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.231-246
    • /
    • 2008
  • In this paper, we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish several integration formulas for generalized analytic Feynman integrals generalized analytic Fourier-Feynman transforms and generalized integral transforms of functionals in the class of functionals ${\mathbb{E}}_0$. Finally, we use these integration formulas to obtain several generalized Feynman integrals involving the generalized analytic Fourier-Feynman transform and the generalized integral transform of functionals in ${\mathbb{E}}_0$.

  • PDF

FEYNMAN INTEGRALS IN WHITE NOISE ANALYSIS

  • KANG, SOON-JA
    • Honam Mathematical Journal
    • /
    • v.20 no.1
    • /
    • pp.97-109
    • /
    • 1998
  • We first obtain the white noise calculus to the computation of Feynman integral for a generalized function, according to the definition of Feynman integrals by T. Hida and L. Streit. We next give the translation theorem for Feynman integral of a generalized function.

  • PDF

CONDITIONAL INTEGRALS ON ABSTRACT WIENER AND HILBERT SPACES WITH APPLICATION TO FEYNMAN INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja;Lim, Kyung-Pil
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.319-344
    • /
    • 2004
  • In this paper, we define conditional integrals on abstract Wiener and Hilbert spaces and then obtain a formula for evaluating the integrals. We use this formula to establish the existence of conditional Feynman integrals for the classes $A^{q}$(B) and $A^{q}$(H) of functions on abstract Wiener and Hilbert spaces and then specialize this result to provide the fundamental solution to the Schrodinger equation with the forced harmonic oscillator.tor.

A FUBINI THEOREM FOR ANALYTIC FEYNMAN INTEGRALS WITH APPLICATIONS

  • Huffman, Timothy;Skoug, David;Storvick, David
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.409-420
    • /
    • 2001
  • In this paper we establish a Fubini theorem for various analytic Wiener and Feynman integrals. We then proceed to obtain several integration formulas as corollaries.

  • PDF

A CHANGE OF SCALE FORMULA FOR GENERALIZED WIENER INTEGRALS II

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Cameron and Storvick discovered change of scale formulas for Wiener integrals on classical Wiener space. Yoo and Skoug extended this result to an abstract Wiener space. In this paper, we investigate a change of scale formula for generalized Wiener integrals of various functions using the generalized Fourier-Feynman transform.

CHANGE OF SCALE FORMULAS FOR FUNCTION SPACE INTEGRALS RELATED WITH FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION ON Ca,b[0, T]

  • Kim, Bong Jin;Kim, Byoung Soo;Yoo, Il
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • We express generalized Fourier-Feynman transform and convolution product of functionals in a Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$ as limits of function space integrals on $C_{a,b}[0,T]$. Moreover we obtain change of scale formulas for function space integrals related with generalized Fourier-Feynman transform and convolution product of these functionals.

파인만 적분에 대한 소고

  • 장주섭
    • Journal for History of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • In this paper we introduce the Feynman integral which is one of the function space integrals. There are so many approaches to the Feynman integral. Here we treat tile analytic Feynman integral and the operator-valued Feynman integral.

  • PDF

FEYNMAN INTEGRALS, DIFFUSION PROCESSES AND QUANTUM SYMPLECTIC TWO-FORMS

  • Zambrini, Jean-Claude
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.385-408
    • /
    • 2001
  • This is an introduction to a stochastic version of E. Cartan′s symplectic mechanics. A class of time-symmetric("Bernstein") diffusion processes is used to deform stochastically the exterior derivative of the Poincare-Cartan one-form on the extended phase space. The resulting symplectic tow-form is shown to contain the (a.e.) dynamical laws of the diffusions. This can be regarded as a geometrization of Feynman′s path integral approach to quantum theory; when Planck′s constant reduce to zero, we recover Cartan′s mechanics. The underlying strategy is the one of "Euclidean Quantum Mechanics".

  • PDF