FEYNMAN INTEGRALS IN WHITE NOISE ANALYSIS

  • KANG, SOON-JA (Dept. of Mathematics Education, Chonnam National University)
  • Received : 1998.04.07
  • Published : 1998.07.30

Abstract

We first obtain the white noise calculus to the computation of Feynman integral for a generalized function, according to the definition of Feynman integrals by T. Hida and L. Streit. We next give the translation theorem for Feynman integral of a generalized function.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Bull. of Kor. math. Soc. v.23 no.2 Translation theorem for Feynman integrals and an abstract Wiener and Hilbert spaces Chung, D.M.;Kang, S.J.
  2. Appication of white noise calculus to the computation of Feynman integrals Diego de Falco;Khandekar, Dinkar C.
  3. Rev. Mod. Phys. v.20 Space-time approach to non-relativistic quantum mechanics Feynman, R.P.
  4. White noise: An Infinite Dimensional Calculus, Monograph in preparation Hida, T.;Kuo, H.H.;Potthoff, J.;Streit, L.
  5. Proc. 4th Berkley Sympo. Math. Stat. Prob. v.2 Wiener integral and Feynman integral Ito, K.
  6. Generalized Feynman integrals using analytic continuation in several complex variables;Stochastic Analysis Kallianpur, G.;Bromley, C.;Pinsky, M.(ed.)
  7. Ann. Inst. H.Poincare v.21 Analytic and sequential Feynman integrals on abstract Wiener and Hilbert space, and a Cameron-Martin formula Kallianpur, G.;Kannan, D.;Karandikar, R.L.
  8. Reports on Math. Phys. v.33 Spaces of white noise distributions: Constructions, Descriptions, Applications, I Kontratiev, Yu.G.;Streit, L.
  9. Lecture Notes in Math. v.463 Gaussian measures in Banach spaces Kuo, H.H.
  10. Soochow J. Math. v.18 Lecture on White noise analysis Kuo, H.H.
  11. White noise distribution theory, Probability and stochastic series Kuo, H.H.
  12. A complex scaling approach to sequential Feynman integrals Luo, S.L.;Yan, J.A.
  13. Lecture notes in Math v.1577 White noise calculus and Fock space Obata, N.
  14. Stochastic process and their applications v.16 Generalized Brownian functionals and Feynman integrals Streit, L.;Hida
  15. Stochastic process and their applications v.54 From Feynman-Kac formula to Feynman integral via analytic continuation Yan, J.A.