• Title/Summary/Keyword: Facile synthesis

Search Result 335, Processing Time 0.026 seconds

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Zheng, Gang;Li, Zhiang;Lu, Jinhua;Zhang, Jinhua;Chen, Long;Yang, Maoping
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.

A facile green reduction of graphene oxide using Annona squamosa leaf extract

  • Chandu, Basavaiah;Mosali, Venkata Sai Sriram;Mullamuri, Bhanu;Bollikolla, Hari Babu
    • Carbon letters
    • /
    • v.21
    • /
    • pp.74-80
    • /
    • 2017
  • A highly facile and eco-friendly green synthesis of Annona squamosa (custard apple) leaf extract reduced graphene oxide (CRG) nanosheets was achieved by the reduction of graphene oxide (GO). The as-prepared CRG was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopic techniques. Removal of oxygen containing moieties from the GO was confirmed by UV-Vis, FT-IR and XPS spectroscopic data. The XRD and Raman data further confirmed the formation of the CRG. TEM images showed the sheet structure of the synthesized CRG. These results show that the phytochemicals present in custard apple leaf extract act as excellent reducing agents. The CRG showed good dispersion in water.

A Facile Synthesis of Discoidal Lipid Bilayer Nanostructure by Association of a Cationic Amphiphilic Polyelectrolyte

  • Cho, Eun-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2187-2192
    • /
    • 2012
  • This study presents a facile way synthesizing disc-like lipid bilyaer nanostructures with a cationic amphiphilic polyelectrolyte. The cationic amphiphilic polyelectrolyte was in a form of partially quarternized copolymer and was synthesized with 2-(dimethylamino)ethyl methacrylate and stearyl methacrylate. At some concentration ranges of the polymer, the addition of the polymer to lipid components during the preparation of bilayer nanostructures resulted in discs with a fairly high yield (~99%). The mechanism for the formation of the nanostructures was discussed based on the physical properties of these nanostructures and by comparing the nanostructures obtained with an anionic amphiphilic polyelectrolyte.

Facile and Room Temperature Preparation and Characterization of PbS Nanoparticles in Aqueous [EMIM][EtSO4] Ionic Liquid Using Ultrasonic Irradiation

  • Behboudnia, M.;Habibi-Yangjeh, A.;Jafari-Tarzanag, Y.;Khodayari, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.53-56
    • /
    • 2009
  • At room-temperature, a facile, seedless, and environmentally benign green route for the synthesis of star like PbS nanoclusters at 7 min in aqueous solution of 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM] [$EtSO_{4}$], room-temperature ionic liquid (RTIL), via ultrasonic irradiation is proposed. The X-ray diffraction studies display that the products are excellently crystallized in the form of cubic structure. An energy dispersive X-ray spectroscopy (EDX) investigation reveals the products are extremely pure. The absorption spectra of the product exhibit band gap energy of about 4.27 eV which shows an enormous blue shift of 3.86 eV that can be attributed to very small size of PbS nanoparticles produced and quantum confinement effect. A possible formation mechanism of the PbS nanoparticles using ultrasonic irradiation in aqueous solution of the RTIL is presented.

Scolecite Catalyzed Facile and Efficient Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multi-component Condensation

  • Gadekar, Lakshman S.;Katkar, Santosh S.;Mane, Shivshankar R.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2532-2534
    • /
    • 2009
  • A facile and efficient synthetic route has been developed for the polyhydroquinoline via four component reactions of aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of catalytic amount of scolecite in ethanol at 70 ${^{\circ}C}$ through Hantzsch reaction. This method gives remarkable advantages such as simple work-up procedure, environmentally friendly, inexpensive, non-toxic and recyclable catalyst, shorter reaction time along with excellent yields.

Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light

  • Wang, Wei;He, Mingyi;Zhang, Huan;Dai, Yatang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.179-182
    • /
    • 2016
  • In this paper, 10 nm $Fe_3O_4$ nanoparticles were modified on the surface of $2{\mu}m$ flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the $Fe_3O_4/BiOCl$ nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property ($M_s=3.22emu/g$) under visible light for Rhodamine B (RhB) degradation. Moreover, the $Fe_3O_4-BiOCl$ photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.

A Facile Method for the Synthesis of Freestanding CuO Nanoleaf and Nanowire Films

  • Zhao, Wei;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.360-364
    • /
    • 2018
  • A facile method to fabricate freestanding CuO nanoleaves and CuO nanowires-based films was demonstrated. $Cu(OH)_2$ nanoleaves and nanowires were prepared by a hydrolysis reaction in aqueous solution including pyridine and NaOH with the tailored concentrations at room temperature. The films of freestanding CuO nanoleaves and CuO nanowires can be successfully obtained via the simple vacuum infiltration following a thermal dehydration reaction. The morphologies and crystallinity of the $Cu(OH)_2$ nanoleaves/nanowires and CuO nanoleaves/nanowires were characterized by XRD, SEM, TEM and FT-IR. The films fabricated with freestanding CuO nanoleaves and nanowires in this study may be applicable for building high-efficiency organic binder-free devices, such as gas sensors, batteries, photoelectrodes for water splitting and so on.

A Facile Synthesis of Disacharides Containing $\alpha$ -Altropyranosidic Linkage by 1, 2-trans Glycosidation of D-allal Derivatives (D-알알 유도체의 1, 2-trans 글리코시드 형성 반응을 이용한 $\alpha$ -알트로피라노시드 결합을 갖는 이당류의 효과적 합성법의 개발)

  • Choi, Jong Lak;Yoon, Shin Sook;Chun, Keun Ho;Nam Shin, Jeong E.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.78-83
    • /
    • 1998
  • It's necessary to develope a facile methodology forming ${\alpha}$-altropyranosidic linkage, for the synthesis of trisaccharide repeating unit of O-antigenic part of Campylobacter jejuni gram negative bacteria. In this paper, the effective synthesis of disaccharides containing ${\alpha}$-altropyranosidic linkage by 1,2-trans glycosidation of allal derivatives was discussed. 4, 6-O-Benzylidene-3-O-(t-butyldimethylsilyl)-D-allal was treated with DMDO (3,3-dimethy ldioxirane) to yield 1,2-anhydro-4, 6-O-benzylidene-3-O-(t-butyldimethylsilyl)-${\beta}$-D-altropyranose. The reaction of 1,2-anhydro-4, 6-O-benzylidene-3-O-(t-butyldimethylsilyl)-${\beta}$-D-altropyranose with allyl alcohol gave allyl 4, 6-O-benzylidene-3-(t-butyldimethylsilyl)-${\alpha}$-D-altropyranoside quantitatively, and reactions with glucals were also successful to prepare ${\alpha}$-altropyranosodic disaccharides. It is convinced that 1,2-trans glycosidation of allal derivatives should be an attractive choice for preparing oligosaccharides containing ${\alpha}$-altropyranosidic linkages.

  • PDF

Facile Synthesis of ZnO Nanoparticles and Their Photocatalytic Activity

  • Lee, Soo-Keun;Kim, A Young;Lee, Jun Young;Ko, Sung Hyun;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2004-2008
    • /
    • 2014
  • This paper reports the facile synthesis methods of zinc oxide (ZnO) nanoparticles, Z1-Z10, using diethylene glycol (DEG) and polyethylene glycol (PEG400). The particle size and morphology were correlated with the PEG concentration and reaction time. With 0.75 mL of PEG400 in 150 mL of DEG and a 20 h reaction time, the ZnO nanoparticles began to disperse from a collective spherical grain shape. The ZnO nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and a $N_2$ adsorption-desorption studies. The Brunauer-Emmett-Teller (BET) surface areas of Z4, Z5 and Z10 were 157.083, 141.559 and 233.249 $m^2/g$, respectively. The observed pore diameters of Z4, Z5 and Z10 were 63.4, 42.0 and 134.0 ${\AA}$, respectively. The pore volumes of Z4, Z5 and Z10 were 0.249, 0.148 and 0.781 $cm^3/g$, respectively. The photocatalytic activity of the synthesized ZnO nanoparticles was evaluated by methylene blue (MB) degradation, and the activity showed a good correlation with the $N_2$ adsorption-desorption data.

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.