DOI QR코드

DOI QR Code

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Received : 2020.05.14
  • Accepted : 2020.07.19
  • Published : 2020.11.30

Abstract

Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.

Keywords

References

  1. M. Li, J. Lu, Z. Chen, and K. Amine, Adv. Mat., 2018, 30 (33), 1800561. https://doi.org/10.1002/adma.201800561
  2. G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, Renewable and Sustainable Energy Rev., 2018, 89, 292-308. https://doi.org/10.1016/j.rser.2018.03.002
  3. A. Re. Kamali, and D. J Fray, J. New Mat. for Electrochem. Systems, 2010, 13(2), 147-160.
  4. B. Moradi, and G. G Botte, J. Appl. Electrochem., 2016, 46(2), 123-148. https://doi.org/10.1007/s10800-015-0914-0
  5. J. Wu, H. Chen, I. Byrd, S. Lovelace, and C. Jin, ACS Appl. Mat. & Interfaces, 2016, 8(22), 13946-13956. https://doi.org/10.1021/acsami.6b03310
  6. Q. Xiong, H. Chi, J. Zhang and J. Tu, J. Alloy Compd., 2016, 688, 729-735.
  7. H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana, and W. Yoon, Chem. Rev., 2020.
  8. X. Li, A. Dhanabalan, and C. Wang, J. Power Sources, 2011, 196(22), 9625-9630. https://doi.org/10.1016/j.jpowsour.2011.06.097
  9. C. Hou, S. Brahma, S. Weng, C. Chang, and J. Huang, J. Electrochem. En. Conv. Stor. 2020, 17(3), 031003. https://doi.org/10.1115/1.4045155
  10. W. Zhang, L. Feng, H. Chen, and Y. Zhang, Nano, 2019, 14(09), 1950109. https://doi.org/10.1142/S1793292019501091
  11. S. Ko, J. Lee, H. S. Yang, S. Park, and U. Jeong, Adv. Mat., 2012, 24(32), 4451-4456. https://doi.org/10.1002/adma.201201821
  12. M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T. B Hadda, and I. Warad, J. Mat. and Environ. Sci., 2013, 4(5), 792-797.
  13. X. Gao, J. Bao, G. Pan, H. Zhu, P. Huang, F. Wu, and D. Song, J. Physical Chem. B, 2004, 108(18), 5547-5551. https://doi.org/10.1021/jp037075k
  14. B. Wang, X. Wu, C. Shu, Y. Guo, and C. Wang, J. Mat. Chem., 2010, 20(47), 10661-10664. https://doi.org/10.1039/c0jm01941k
  15. Z. Yin, Y. Ding, Q. Zheng, and L. Guan, Electrochem. Commun., 2012, 20, 40-43. https://doi.org/10.1016/j.elecom.2012.04.005
  16. C. Wang, D. Higgins, F. Wang, D. Li, R. Liu, G. Xia, N. Li, Q. Li, H. Xu, and G. Wu, Nano Energy, 2014, 9, 334-344. https://doi.org/10.1016/j.nanoen.2014.08.009
  17. A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan, and S. Ogale, Nano Energy, 2013, 2(6), 1158-1163. https://doi.org/10.1016/j.nanoen.2013.04.008
  18. S. Wang, J. Zhang, and C. Chen, Scripta Materialia, 2007, 57(4), 337-340. https://doi.org/10.1016/j.scriptamat.2007.04.034
  19. S. Xiao, D. Pan, L. Wang, Z. Zhang, Z. Lyu, W. Dong, X. Chen, D. Zhang, W. Chen, and H. Li, Nanoscale, 2016, 8(46), 19343-19351. https://doi.org/10.1039/c6nr07802h
  20. F. Pu, C. Kong, J. Lv, W. Zhang, X. Zhang, S. Yang, H. Jin, and Z. Yang, J. Alloys and Compounds, 2019, 805, 355-362. https://doi.org/10.1016/j.jallcom.2019.06.160
  21. S. Jia, Y. Wang, X. Liu, S. Zhao, W. Zhao, Y. Huang, Z. Li, and Z. Lin, Nano Energy, 2019, 59, 229-236. https://doi.org/10.1016/j.nanoen.2019.01.081
  22. X. Chen, C. Yu, X. Guo, Q. Bi, M. Sajjad, Y. Ren, X. Zhou, and Z. Liu, Nano, 2018, 13(09), 1850103. https://doi.org/10.1142/S1793292018501035
  23. Z. Zhu, L. R Radovic, and G. Lu, Carbon, 2000, 38(3), 451-464. https://doi.org/10.1016/S0008-6223(99)00127-X
  24. Y. Yin, R. M Rioux, C. K Erdonmez, S. Hughes, G. A Somorjai, and A P. Alivisatos, Science, 2004, 304(5671), 711-714. https://doi.org/10.1126/science.1096566
  25. A. Debart, L. Dupont, P. Poizot, J. Leriche, and J. Tarascon, J. Electrochem. Soc., 2001, 148(11), A1266. https://doi.org/10.1149/1.1409971
  26. H. Yin, X. Yu, Q. Li, M. Cao, W. Zhang, H. Zhao, and M. Zhu, J. Alloys and Compounds, 2017, 706, 97-102. https://doi.org/10.1016/j.jallcom.2017.02.215
  27. X. Zhao, W. Wang, Z. Hou, Y. Yu, Q. Di, X. Wu, G. Wei, Z. Quan, and J. Zhang, Inorganic Chemistry Frontiers, 2019, 6(2), 473-476. https://doi.org/10.1039/c8qi01143e
  28. W. Yuan, Z. Qiu, Y. Chen, B. Zhao, M. Liu, and Y. Tang, Electrochim. Acta, 2018, 267, 150-160. https://doi.org/10.1016/j.electacta.2018.02.081
  29. J. Xiang, J. Tu, J. Zhang, J. Zhong, D. Zhang, and J. Cheng, Electrochem. Commun., 2010, 12(8), 1103-1107. https://doi.org/10.1016/j.elecom.2010.05.039
  30. J. Lee, J. Moon, S. A Han, J. Kim, V. Malgras, Y.-U. Heo, H. Kim, S.-M. Lee, H. K. Liu, and S. X. Dou, ACS nano, 2019, 13(8), 9607-9619. https://doi.org/10.1021/acsnano.9b04725
  31. Y. Dong, X. Jiang, J. Mo, Y. Zhou, and J. Zhou, Chem. Eng. J., 2020, 381, 122614. https://doi.org/10.1016/j.cej.2019.122614
  32. J. C. Park, J. Kim, H. Kwon, and H. Song, Adv. Mat., 2009, 21(7), 803-807. https://doi.org/10.1002/adma.200800596