DOI QR코드

DOI QR Code

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung (Energy Storage Group, New and Renewable Energy Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute) ;
  • Namgung, Yeon (School of Materials Science and Engineering, Chonnam National University) ;
  • Bhardwaj, Aman (School of Materials Science and Engineering, Chonnam National University) ;
  • Song, Sun-Ju (School of Materials Science and Engineering, Chonnam National University)
  • Received : 2019.07.31
  • Accepted : 2019.08.12
  • Published : 2019.09.30

Abstract

Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.

Keywords

References

  1. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  2. D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, "Intermediate Temperature Solid Oxide Fuel Cells," Chem. Soc. Rev., 37 [8] 1568-78 (2008). https://doi.org/10.1039/b612060c
  3. B. C. H. Steele and A. Heinzel, "Materials for Fuel-Cell Technologies," Nature, 414 [6861] 345-52 (2001). https://doi.org/10.1038/35104620
  4. Z. Gao, L. V Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, "A Perspective on Low-Temperature Solid Oxide Fuel Cells," Energy Environ. Sci., 9 [5] 1602-44 (2016). https://doi.org/10.1039/c5ee03858h
  5. R. M. Ormerod, "Solid Oxide Fuel Cells," Chem. Soc. Rev., 32 [1] 17-28 (2003). https://doi.org/10.1039/b105764m
  6. C. Sun, R. Hui, and J. Roller, "Cathode Materials for Solid Oxide Fuel Cells: A Review," J. Solid State Electrochem., 14 [7] 1125-44 (2010). https://doi.org/10.1007/s10008-009-0932-0
  7. J. A. Kilner and M. Burriel, "Materials for Intermediate-Temperature Solid-Oxide Fuel Cells," Annu. Rev. Mater. Res., 44 365-93 (2014). https://doi.org/10.1146/annurev-matsci-070813-113426
  8. Y. Cao, M. J. Gadre, A. T. Ngo, S. B. Adler, and D. D. Morgan, "Factors Controlling Surface Oxygen Exchange in Oxides," Nat. Commun., 10 [1] 1346 (2019). https://doi.org/10.1038/s41467-019-08674-4
  9. J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, and Y. Shao-Horn, "Perovskites in Catalysis and Electrocatalysis," Science, 358 [6364] 751-56 (2017). https://doi.org/10.1126/science.aam7092
  10. S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 4791-43 (2004). https://doi.org/10.1021/cr020724o
  11. S. P. Jiang, "A Comparison of $O_2$ Reduction Reactions on Porous $(La,Sr)MnO_3$ and $(La,Sr)(Co,Fe)O_3$ Electrodes," Solid State Ionics, 146 [1-2] 1-22 (2002). https://doi.org/10.1016/S0167-2738(01)00997-3
  12. S. U. Rehman, R.-H. Song, T.-H. Lim, S.-J. Park, J.-E. Hong, J.-W. Lee, and S.-B. Lee, "High-Performance Nanofibrous $LaCoO_3$ Perovskite Cathode for Solid Oxide Fuel Cells Fabricated via Chemically Assisted Electrodeposition," J. Mater. Chem. A, 6 [16] 6987-96 (2018). https://doi.org/10.1039/C7TA10701C
  13. S. V Chavan and R. N. Singh, "Preparation, Properties, and Reactivity of Lanthanum Strontium Ferrite as an Intermediate Temperature SOFC Cathode," J. Mater. Sci., 48 [19] 6597-604 (2013). https://doi.org/10.1007/s10853-013-7456-9
  14. B. C. H. Steele and J.-M. Bae, "Properties of $La_{0.6}Sr_{0.4}Co_{0.2}-Fe_{0.8}O_{3-x}$ (LSCF) Double Layer Cathodes on Gadoliniumdoped Cerium Oxide (CGO) Electrolytes: II. Role of Oxygen Exchange and Diffusion," Solid State Ionics, 106 [3-4] 255-61 (1998). https://doi.org/10.1016/S0167-2738(97)00430-X
  15. M. Sahibzada, S. J. Benson, R. A. Rudkin, and J. A. Kilner, "Pd-Promoted $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Cathodes," Solid State Ionics, 113-115 285-90 (1998). https://doi.org/10.1016/S0167-2738(98)00294-X
  16. A. A. Enrico, W. Zhang, M. L. Traulsen, E. M. Sala, P. Costamagna, and P. Holtappels, "$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Nanofiber Cathode for Intermediate-Temperature Solid Oxide Fuel Cells by Water-based Sol-Gel Electrospinning: Synthesis and Electrochemical Behavior," J. Eur. Ceram. Soc., 38 [7] 2677-86 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.01.034
  17. J. Oishi, J. Otomo, Y. Oshima, and M. Koyama, "The Effects of Minor Elements in $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Cathodes on Oxygen Reduction Reaction," J. Power Sources, 277 44-51 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.001
  18. A. Chrzan, J. Karczewski, M. Gazda, D. Szymczewska, and P. Jasinski, "$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Electrodes for Solid Oxide Cells Prepared by Polymer Precursor and Nitrates Solution Infiltration into Gadolinium Doped Ceria Backbone," J. Eur. Ceram. Soc., 37 [11] 8-13 (2017).
  19. J. Chen, D. Wan, X. Sun, B. Li, and M. Lu, "Electrochemical Impedance Spectroscopic Characterization of Impregnated $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Cathode for Intermediate-Temperature SOFCs," Int. J. Hydrogen Energy, 43 [20] 2-8 (2018).
  20. L. M. P. Garcia, D. A. Macedo, G. L. Souza, F. V Motta, C. A. Paskocimas, and R. M. Nascimento, "Citrate - Hydrothermal Synthesis, Structure and Electrochemical Performance of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Cathodes for ITSOFCs," Ceram. Int., 39 [7] 8385-92 (2013). https://doi.org/10.1016/j.ceramint.2013.04.019
  21. S. A. Muhammed Ali, M. Anwar, M. R. Somalu, and A. Muchtar, "Enhancement of the Interfacial Polarization Resistance of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Cathode by Microwave-Assisted Combustion Method," Ceram. Int., 43 [7] 4647-54 (2017). https://doi.org/10.1016/j.ceramint.2016.12.136
  22. A. Akbari-Fakhrabadi, P. Sathishkumar, K. Ramam, R. Palma, and R. V Mangalaraja, "Low Frequency Ultrasound Assisted Synthesis of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) Perovskite Nanostructures," Powder Technol., 276 200-3 (2015). https://doi.org/10.1016/j.powtec.2015.02.043
  23. F. Zhou, L. Zhou, M. Hu, X. Tong, Y. Liu, and H. Li, "Pddoped $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Perovskite Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells," Solid State Ionics, 319 22-7 (2018). https://doi.org/10.1016/j.ssi.2018.01.044
  24. Y. M. Park, J. Hee, and H. Kim, "In situ Sinterable Cathode with Nanocrystalline $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3Ld$ for Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 36 5617-23 (2011). https://doi.org/10.1016/j.ijhydene.2011.02.011
  25. Z. Liu, M. Han, and W. Miao, "Preparation and Characterization of Graded Cathode $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$," J. Power Sources, 173 [2] 837-41 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.076
  26. J. H. Kim, Y. Min, and H. Kim, "Nano-Structured Cathodes Based on $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ for Solid Oxide Fuel Cells," J. Power Sources, 196 [7] 3544-47 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.029
  27. A. L. Soldati, E. Teixeira-neto, H. E. Troiani, L. C. Baqu, A. Schreiber, and A. C. Serquis, "Degradation of Oxygen Reduction Reaction Kinetics in Porous $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Cathodes Due to Aging-Induced Changes in Surface Chemistry," J. Power Sources, 337 166-72 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.090
  28. D. Ding, X. Li, S. Y. Lai, K. Gerdes, and M. Liu, "Enhancing SOFC Cathode Performance by Surface Modification through Infiltration," Energy Environ. Sci. 7 [2] 552-75 (2014). https://doi.org/10.1039/c3ee42926a
  29. M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki, and K. Amikura, "High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells," J. Electrochem. Soc., 141 [2] 342-46 (1994). https://doi.org/10.1149/1.2054728
  30. K. S. Dhathathreyan, N. Rajalakshmi, and R. Balaji, "Nanomaterials for Fuel Cell Technology," pp. 569-96 in Nanotechnology for Energy Sustainability, Wiley Online Library, 2017.
  31. A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I. Petra, F. Begum, S. G. Eriksson, and A. K. Azad, "Nanomaterials for Solid Oxide Fuel Cells: A Review," Renewable Sustainable Energy Rev., 82 353-68 (2018). https://doi.org/10.1016/j.rser.2017.09.046
  32. K. I. Ozoemena and S. Chen, Nanomaterials for Fuel Cell Catalysis; Springer International Publishing Switzerland, 2016.
  33. A. Varma, A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan, "Solution Combustion Synthesis of Nanoscale Materials," Chem. Rev., 116 [23] 14493-586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279
  34. S. Serena, B. Moreno, E. Chinarro, J. R. Jurado, and A. Caballero, "Application of the Thermodynamic Calculation of the Pt-Ni-Ru-($O_2$) System to the Development of Pt-Based Catalyst," J. Alloys Compd., 583 481-87 (2014). https://doi.org/10.1016/j.jallcom.2013.08.032
  35. J. Hong, C. Balamurugan, H. Im, S. Jeon, Y. Yoo, and S. Song, "The Electrochemical Properties of Nanocrystalline $Gd_{0.1}Ce_{0.9}O_{1.95}$ Infiltrated Solid Oxide Co-Electrolysis Cells," J. Electrochem. Soc., 165 [3] 132-41 (2018).
  36. J. N. Kuhn and U. S. Ozkan, "Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped $LaFeO_3$," Catal. Lett., 121 [3-4] 179-88 (2008). https://doi.org/10.1007/s10562-007-9364-6
  37. D. Kennouche, Q. Fang, L. Blum, and D. Stolten, "Analysis of the Cathode Electrical Contact in SOFC Stacks," J. Electrochem. Soc., 165 [9] F677-83 (2018). https://doi.org/10.1149/2.0761809jes
  38. N. Shi, F. Su, D. Huan, Y. Xie, J. Lin, W. Tan, R. Peng, C. Xia, C. Chen, and Y. Lu, "Performance and DRT Analysis of P-SOFCs Fabricated Using New Phase Inversion Combined Tape Casting Technology," J. Mater. Chem. A, 5 [37] 19664-71 (2017). https://doi.org/10.1039/C7TA04967F

Cited by

  1. Evaluation of the effects of nanocatalyst infiltration on the SOFC performance and electrode reaction kinetics using the transmission line model vol.8, pp.44, 2020, https://doi.org/10.1039/d0ta07166h
  2. Effect of Co3O4 Nanoparticles on Improving Catalytic Behavior of Pd/Co3O4@MWCNT Composites for Cathodes in Direct Urea Fuel Cells vol.11, pp.4, 2019, https://doi.org/10.3390/nano11041017
  3. Understanding redox cycling behavior of Ni-YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00136-2
  4. Kinetic insight into perovskite LA 0.8 SR 0.2 VO 3 nanofibers as an efficient electrocatalytic cathode for high‐rate LIO 2 batteries vol.3, pp.11, 2019, https://doi.org/10.1002/inf2.12243
  5. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells vol.894, 2019, https://doi.org/10.1016/j.jallcom.2021.162458