DOI QR코드

DOI QR Code

Scolecite Catalyzed Facile and Efficient Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multi-component Condensation

  • Gadekar, Lakshman S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Katkar, Santosh S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Mane, Shivshankar R. (National Chemical Laboratory) ;
  • Arbad, Balasaheb R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Lande, Machhindra K. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Published : 2009.11.20

Abstract

A facile and efficient synthetic route has been developed for the polyhydroquinoline via four component reactions of aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of catalytic amount of scolecite in ethanol at 70 ${^{\circ}C}$ through Hantzsch reaction. This method gives remarkable advantages such as simple work-up procedure, environmentally friendly, inexpensive, non-toxic and recyclable catalyst, shorter reaction time along with excellent yields.

Keywords

References

  1. Godfraind, T.; Miller, R.; Wibo, M. Pharmacol. Rev. 1986, 38, 321.
  2. Janis, R. A.; Silver, P. J.; Triggle, D. J. J. Adv. Drug. Res. 1987, 16, 309.
  3. Mager, P. P.; Coburn, R. A.; Solo, A. J.; Triggle, D. J.; Rothe, H. Drug Des. Discov. 1992, 8, 273.
  4. Manmhold, R.; Jablonka, B.; Voigdt, W.; Schoenafinger, K.; Schraven, E. J. Med. Chem. 1992, 27, 229. https://doi.org/10.1016/0223-5234(92)90006-M
  5. Gaudio, A. C.; Korokovas, A.; Takahata, Y. J. Pharm. Sci. 1994, 83, 1110 https://doi.org/10.1002/jps.2600830809
  6. Klusa, V. Drugs Fut. 1995, 20, 135
  7. Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Am. J. Kidney Dis. 1993, 21, 53 https://doi.org/10.1016/j.tetlet.2005.05.148
  8. Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Drugs Fut. 1992, 17, 465
  9. Boer, R.; Gekeler, V. Drugs Fut. 1995, 20, 499 https://doi.org/10.1016/S0040-4039(03)00813-X
  10. Hantzsch, A. Ann. Chem. 1882, 215, 1. https://doi.org/10.1016/j.tet.2006.05.037
  11. Hantzsch, A. Dtsch. Chem. Ges. 1888, 21, 942. https://doi.org/10.2174/157017807780037405
  12. Hantzsch, A. Dtsch. Chem. Ges. 1890, 23, 1747.
  13. Wiley, R. H.; England, D. C.; Behr, L. C. In Organic Reactions; Wiley: Toronto, 1951; vol 6, p 367 https://doi.org/10.1080/00397910802513060
  14. Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 5771 https://doi.org/10.1016/j.tetlet.2009.01.140
  15. Maheswara, M.; Siddaiah, V.; Damu, G. L. V.; Rao, C. V. Arkivoc. 2006, ii, 201 https://doi.org/10.1016/j.tet.2004.11.079
  16. Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadhav, J. S. Tetrahedron Lett. 2003, 44, 4129 https://doi.org/10.1016/j.molcata.2006.03.079
  17. Ko, S.; Yao, C.-F. Tetrahedron 2006, 62, 7293 https://doi.org/10.1016/j.tet.2006.05.037
  18. Karade, N. N.; Budhewar, V. H.; Shinde, S. V.; Jadhav, W. N. Lett. Org. Chem. 2007, 4, 16 https://doi.org/10.1021/jo951706s
  19. Ji, S. J.; Jiang, Z. Q.; Lu, J.; Loh, T. P. Synlett. 2004, 831
  20. Fard, M.; Moghanian, H.; Ebrahimi, S.; Kalhor, M. Synth. Commun. 2009, 39(7), 1166 https://doi.org/10.1007/s10562-008-9508-3
  21. Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2009, 50(15), 1754 https://doi.org/10.1016/j.tetlet.2009.01.140
  22. Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.; Tian, H.; Qian, C. T. Tetrahedron 2005, 61, 1539 https://doi.org/10.1016/j.tet.2004.11.079
  23. Donelson, J. L.; Gibbs R. A.; De, S. K. J. Mol. Catal A: Chem. 2006, 256, 309 https://doi.org/10.1016/j.molcata.2006.03.079
  24. Kumar, A.;. Maurya, R. A. Tetrahedron Lett. 2007, 48, 3837
  25. Gordeev, M. F.; Patel, D. V.; Gordon, P. M. J. Org. Chem. 1996, 61, 924 https://doi.org/10.1021/jo951706s
  26. Arumugam, P.; Perumal, P. T. Indian J. Chem: Sec B 2008, 47(B), 1084
  27. Shinde, S. V.; Jadhav, W. N.; Lande, M. K.; Gadekar, L. S.; Arbad, B. R.; Kondre, J. M.; Karade, N. N. Catal. Lett. 2008, 125, 57 https://doi.org/10.1007/s10562-008-9508-3
  28. Gadekar, L. S.; Katkar, S. S.; Vidhate, K. N.; Arbad, B. R.;. Lande, M. K. Bull. Catal. Soc. Ind. 2008, 7, 79.
  29. Lande, M. K.; Gadekar, L. S.; Arbad, B. R. Org. Chem: An Indan J. 2008, 4(9-11), 458.
  30. Gadekar, L. S.; Mane, S. R.; Katkar, S. S.; Arbad, B. R.; Lande, M. K. Cent. Eur. J. Chem. 2009, 7(3), 550. https://doi.org/10.2478/s11532-009-0050-y
  31. Katkar, S.; Gadekar, L.; Lande, M. Rasayan J. Chem. 2008, 1(4), 865
  32. Bandgar, B. P.; More, P. E.; Kamble, V. T.; Totre, J. V. Arkivoc. 2008, $\chi\nu$, 1

Cited by

  1. ZnO-beta zeolite: as an effective and reusable heterogeneous catalyst for the one-pot synthesis of polyhydroquinolines vol.3, pp.4, 2010, https://doi.org/10.1080/17518253.2010.482065
  2. A new In–SiO2 composite catalyst in the solvent-free multicomponent synthesis of Ca2+ channel blockers nifedipine and nemadipine B vol.36, pp.7, 2012, https://doi.org/10.1039/c2nj40060j
  3. –CNT nanocomposites: a powerful, reusable, and stable catalyst for sonochemical synthesis of polyhydroquinolines vol.39, pp.2, 2015, https://doi.org/10.1039/C4NJ01588F
  4. Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2163-6
  5. One-Pot Synthesis of Polyhydroquinoline Derivatives through Organic-Solid-Acid-Catalyzed Hantzsch Condensation Reaction vol.9, pp.8, 2017, https://doi.org/10.1002/cctc.201601409
  6. Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: a greener protocol for benzopyran synthesis vol.5, pp.2, 2018, https://doi.org/10.1098/rsos.170333
  7. Microwave assisted scolecite as heterogeneous catalyst for multicomponent one-pot synthesis of novel chromene scaffolds with quantitative yields vol.6, pp.2, 2018, https://doi.org/10.1080/22243682.2018.1426040
  8. )-One pp.1563-5333, 2020, https://doi.org/10.1080/10406638.2018.1544155
  9. Mesolite: An Efficient Heterogeneous Catalyst for One-Pot Synthesis of 2-Amino-4H-chromenes vol.38, pp.1, 2018, https://doi.org/10.1080/10406638.2016.1159584
  10. One-Pot Synthesis of Polyhydroquinolines Catalyzed by ZnCl2 Supported on Nano Fe3O4@SiO2 vol.51, pp.3, 2009, https://doi.org/10.1080/00304948.2019.1600132
  11. A Microwave Accelerated Sustainable Approach for the Synthesis of 2-amino-4H-chromenes Catalysed by WEPPA: A Green Strategy vol.6, pp.1, 2019, https://doi.org/10.2174/2213335606666190820091029
  12. MIL-101-SO3H metal-organic framework as a Brønsted acid catalyst in Hantzsch reaction: an efficient and sustainable methodology for one-pot synthesis of 1,4-dihydropyridine vol.43, pp.17, 2009, https://doi.org/10.1039/c9nj00990f
  13. MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones vol.14, pp.2, 2009, https://doi.org/10.23939/chcht14.02.169
  14. Synthesis of polyhydroquinolines and propargylamines through one-pot multicomponent reactions using an acidic ionic liquid immobilized onto magnetic Fe3O4 as an efficient heterog vol.10, pp.42, 2009, https://doi.org/10.1039/d0ra04008h
  15. A Green Synthetic Approach Towards One Pot Multi Component Synthesis of Hexahydroquinoline and 9‐Arylhexahydroacridine‐1,8‐dione Derivatives Catalyzed by Sulphonated Rice Husk vol.5, pp.48, 2020, https://doi.org/10.1002/slct.202004121
  16. Magnetic Fe3O4@SiO2 Core-Shell Nanoparticles Functionalized with Sulfamic Acid Polyamidoamine (PAMAM) Dendrimer for the Multicomponent Synthesis of Polyhydroquinolines vol.53, pp.5, 2009, https://doi.org/10.1080/00304948.2021.1957644