References
- Godfraind, T.; Miller, R.; Wibo, M. Pharmacol. Rev. 1986, 38, 321.
- Janis, R. A.; Silver, P. J.; Triggle, D. J. J. Adv. Drug. Res. 1987, 16, 309.
- Mager, P. P.; Coburn, R. A.; Solo, A. J.; Triggle, D. J.; Rothe, H. Drug Des. Discov. 1992, 8, 273.
- Manmhold, R.; Jablonka, B.; Voigdt, W.; Schoenafinger, K.; Schraven, E. J. Med. Chem. 1992, 27, 229. https://doi.org/10.1016/0223-5234(92)90006-M
- Gaudio, A. C.; Korokovas, A.; Takahata, Y. J. Pharm. Sci. 1994, 83, 1110 https://doi.org/10.1002/jps.2600830809
- Klusa, V. Drugs Fut. 1995, 20, 135
- Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Am. J. Kidney Dis. 1993, 21, 53 https://doi.org/10.1016/j.tetlet.2005.05.148
- Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Drugs Fut. 1992, 17, 465
- Boer, R.; Gekeler, V. Drugs Fut. 1995, 20, 499 https://doi.org/10.1016/S0040-4039(03)00813-X
- Hantzsch, A. Ann. Chem. 1882, 215, 1. https://doi.org/10.1016/j.tet.2006.05.037
- Hantzsch, A. Dtsch. Chem. Ges. 1888, 21, 942. https://doi.org/10.2174/157017807780037405
- Hantzsch, A. Dtsch. Chem. Ges. 1890, 23, 1747.
- Wiley, R. H.; England, D. C.; Behr, L. C. In Organic Reactions; Wiley: Toronto, 1951; vol 6, p 367 https://doi.org/10.1080/00397910802513060
- Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 5771 https://doi.org/10.1016/j.tetlet.2009.01.140
- Maheswara, M.; Siddaiah, V.; Damu, G. L. V.; Rao, C. V. Arkivoc. 2006, ii, 201 https://doi.org/10.1016/j.tet.2004.11.079
- Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadhav, J. S. Tetrahedron Lett. 2003, 44, 4129 https://doi.org/10.1016/j.molcata.2006.03.079
- Ko, S.; Yao, C.-F. Tetrahedron 2006, 62, 7293 https://doi.org/10.1016/j.tet.2006.05.037
- Karade, N. N.; Budhewar, V. H.; Shinde, S. V.; Jadhav, W. N. Lett. Org. Chem. 2007, 4, 16 https://doi.org/10.1021/jo951706s
- Ji, S. J.; Jiang, Z. Q.; Lu, J.; Loh, T. P. Synlett. 2004, 831
- Fard, M.; Moghanian, H.; Ebrahimi, S.; Kalhor, M. Synth. Commun. 2009, 39(7), 1166 https://doi.org/10.1007/s10562-008-9508-3
- Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2009, 50(15), 1754 https://doi.org/10.1016/j.tetlet.2009.01.140
- Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.; Tian, H.; Qian, C. T. Tetrahedron 2005, 61, 1539 https://doi.org/10.1016/j.tet.2004.11.079
- Donelson, J. L.; Gibbs R. A.; De, S. K. J. Mol. Catal A: Chem. 2006, 256, 309 https://doi.org/10.1016/j.molcata.2006.03.079
- Kumar, A.;. Maurya, R. A. Tetrahedron Lett. 2007, 48, 3837
- Gordeev, M. F.; Patel, D. V.; Gordon, P. M. J. Org. Chem. 1996, 61, 924 https://doi.org/10.1021/jo951706s
- Arumugam, P.; Perumal, P. T. Indian J. Chem: Sec B 2008, 47(B), 1084
- Shinde, S. V.; Jadhav, W. N.; Lande, M. K.; Gadekar, L. S.; Arbad, B. R.; Kondre, J. M.; Karade, N. N. Catal. Lett. 2008, 125, 57 https://doi.org/10.1007/s10562-008-9508-3
- Gadekar, L. S.; Katkar, S. S.; Vidhate, K. N.; Arbad, B. R.;. Lande, M. K. Bull. Catal. Soc. Ind. 2008, 7, 79.
- Lande, M. K.; Gadekar, L. S.; Arbad, B. R. Org. Chem: An Indan J. 2008, 4(9-11), 458.
- Gadekar, L. S.; Mane, S. R.; Katkar, S. S.; Arbad, B. R.; Lande, M. K. Cent. Eur. J. Chem. 2009, 7(3), 550. https://doi.org/10.2478/s11532-009-0050-y
- Katkar, S.; Gadekar, L.; Lande, M. Rasayan J. Chem. 2008, 1(4), 865
-
Bandgar, B. P.; More, P. E.; Kamble, V. T.; Totre, J. V. Arkivoc. 2008,
$\chi\nu$ , 1
Cited by
- ZnO-beta zeolite: as an effective and reusable heterogeneous catalyst for the one-pot synthesis of polyhydroquinolines vol.3, pp.4, 2010, https://doi.org/10.1080/17518253.2010.482065
- A new In–SiO2 composite catalyst in the solvent-free multicomponent synthesis of Ca2+ channel blockers nifedipine and nemadipine B vol.36, pp.7, 2012, https://doi.org/10.1039/c2nj40060j
- –CNT nanocomposites: a powerful, reusable, and stable catalyst for sonochemical synthesis of polyhydroquinolines vol.39, pp.2, 2015, https://doi.org/10.1039/C4NJ01588F
- Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2163-6
- One-Pot Synthesis of Polyhydroquinoline Derivatives through Organic-Solid-Acid-Catalyzed Hantzsch Condensation Reaction vol.9, pp.8, 2017, https://doi.org/10.1002/cctc.201601409
- Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: a greener protocol for benzopyran synthesis vol.5, pp.2, 2018, https://doi.org/10.1098/rsos.170333
- Microwave assisted scolecite as heterogeneous catalyst for multicomponent one-pot synthesis of novel chromene scaffolds with quantitative yields vol.6, pp.2, 2018, https://doi.org/10.1080/22243682.2018.1426040
- )-One pp.1563-5333, 2020, https://doi.org/10.1080/10406638.2018.1544155
- Mesolite: An Efficient Heterogeneous Catalyst for One-Pot Synthesis of 2-Amino-4H-chromenes vol.38, pp.1, 2018, https://doi.org/10.1080/10406638.2016.1159584
- One-Pot Synthesis of Polyhydroquinolines Catalyzed by ZnCl2 Supported on Nano Fe3O4@SiO2 vol.51, pp.3, 2009, https://doi.org/10.1080/00304948.2019.1600132
- A Microwave Accelerated Sustainable Approach for the Synthesis of 2-amino-4H-chromenes Catalysed by WEPPA: A Green Strategy vol.6, pp.1, 2019, https://doi.org/10.2174/2213335606666190820091029
- MIL-101-SO3H metal-organic framework as a Brønsted acid catalyst in Hantzsch reaction: an efficient and sustainable methodology for one-pot synthesis of 1,4-dihydropyridine vol.43, pp.17, 2009, https://doi.org/10.1039/c9nj00990f
- MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones vol.14, pp.2, 2009, https://doi.org/10.23939/chcht14.02.169
- Synthesis of polyhydroquinolines and propargylamines through one-pot multicomponent reactions using an acidic ionic liquid immobilized onto magnetic Fe3O4 as an efficient heterog vol.10, pp.42, 2009, https://doi.org/10.1039/d0ra04008h
- A Green Synthetic Approach Towards One Pot Multi Component Synthesis of Hexahydroquinoline and 9‐Arylhexahydroacridine‐1,8‐dione Derivatives Catalyzed by Sulphonated Rice Husk vol.5, pp.48, 2020, https://doi.org/10.1002/slct.202004121
- Magnetic Fe3O4@SiO2 Core-Shell Nanoparticles Functionalized with Sulfamic Acid Polyamidoamine (PAMAM) Dendrimer for the Multicomponent Synthesis of Polyhydroquinolines vol.53, pp.5, 2009, https://doi.org/10.1080/00304948.2021.1957644