• Title/Summary/Keyword: FCM Clustering

Search Result 222, Processing Time 0.026 seconds

Design of RBF-based Polynomial Neural Network (방사형 기저 함수 기반 다항식 뉴럴네트워크 설계)

  • Kim, Ki-Sang;Jin, Yong-Ha;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.261-263
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Web Log Analysis Technique using Fuzzy C-Means Clustering (Fuzzy C-Means클러스터링을 이용한 웹 로그 분석기법)

  • 김미라;곽미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.550-552
    • /
    • 2002
  • 플러스터링이란 주어진 데이터 집합의 패턴들을 비슷한 성실을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론으로, 지금가지 이를 위한 많은 알고리즘들이 개발되어 왔으며, 패턴인식, 영상 처리 등의 여러 공학 분야에 널리 적용되고 있다. FCM(Fuzzy C-Means) 알고리즘은 최소자승 기준함수(least square criterion function)에 퍼지이론을 적용만 목적함수의 반복최적화(iterative optimization)에 기반을 둔 방식으로, 하드 분할에 의한 기존의 클러스터링 방법이 승자(winner take all) 형태의 방법론을 취하는데 비하여, 각 패턴이 특정 클러스터에 속하는 소속정도를 줌으로써 보다 정확한 정보를 형성하도록 도와준다. 본 논문에서는 FCM 기법을 이용한 웹로그 분석을 하고자 한다.

  • PDF

An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition (패턴인식을 위한 Interval Type-2 퍼지 PCM 알고리즘)

  • Min, Ji-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • The Possibilistic C-means(PCM) was proposed to overcome some of the drawbacks associated with the Fuzzy C-means(FCM) such as improved performance for noise data. However, PCM possesses some drawbacks such as sensitivity in initial parameter values and to patterns that have relatively short distances between the prototypes. To overcome these drawbacks, we propose an interval type 2 fuzzy approach to PCM by considering uncertainty in the fuzzy parameter m in the PCM algorithm.

A Study on the Classification of Ports and its Characteristics using Fuzzy C-Means (FCM법에 의한 항만의 분류 및 그 특성 분석에 관한 연구)

  • 금종수;윤명오;양원재
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.143-154
    • /
    • 2000
  • In port management, the scale of facilities and port layouts are major factors characterizing the port, which influence port economics and productivities continuously through the port operation. Grouping ports in certain region by their characteristics could be used as the principal informations to establish national policy for port development or investment and also to analyze the competitiveness between ports. Currently Korean ports are divided into two groups such as the local port and the designated port containing foreign trade port and coastal port under the Korean port law. These divisions seem to be used for port administration as the matter of convenience but some qualitative grouping is needed for research of port problems. In this paper, 20 major Korean ports were clustered by the similar characteristics using Fuzzy C-Means and found to be classified 8 qualitative groups.

  • PDF

Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine) (MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색)

  • Shim, Jeong-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

A Study on Efficiency and Productivity Analysis of Mokpo Port -DEA model and FCM combined analysis- (목포항의 효율성 및 생산성 분석에 관한 연구 -DEA모형과 FCM을 결합분석법-)

  • Kim, Sam-Youl;Choi, Kyoung-Hoon;Pham, Thi Quynh Mai
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.1
    • /
    • pp.183-196
    • /
    • 2020
  • Until now, there have been few studies analyzing the efficiency of the Port of Mokpo and comparing it with other seaports in the country to identify the future direction of development for the port. In this paper, we use the data envelopment analysis (DEA) model in combination with the Malmquist Productivity Index (MPI) to measure the efficiency and productivity of major ports in Korea, focusing on the Port of Mokpo. First, the study identifies which ports are efficient or inefficient based on technical or operational scale. Second, by using the MPI to overcome the shortfalls of the DEA model, the study can compare a port's performance across the years and evaluate the productivity of a port during the research period. Moreover, this study also applies fuzzy C-means (FCM) clustering to classify port groups based on the size of their infrastructure and their efficiency scores. Finally, it is possible to find ways to enhance the efficiency and future direction of development of the Port of Mokpo.

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Jeon, Pil-Han;Park, Chan-Jun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구)

  • Oh, Sung-Kwun;Kim, Hyun-Ki;Kim, Jung-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.

Granular Bidirectional and Multidirectional Associative Memories: Towards a Collaborative Buildup of Granular Mappings

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.435-447
    • /
    • 2017
  • Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.