
 

www.kips.or.kr                                                                                                 Copyright© 2017 KIPS 

       
 
         

 
 

 

Granular Bidirectional and Multidirectional  
Associative Memories: Towards a Collaborative 

 Buildup of Granular Mappings 
 

 

Witold Pedrycz* 

 

 

Abstract 
Associative and bidirectional associative memories are examples of associative structures studied intensively 
in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-
directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative 
memories have been studied in numerous areas yielding efficient applications for image recall and 
enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this 
study, we revisit and augment the concept of associative memories by offering some new design insights 
where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) 
over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we 
have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-
called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that 
the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular 
version in which numeric prototypes that are formed through the clustering process are made granular so that 
the quality of the recall can be quantified. We propose several scenarios in which the allocation of information 
granularity is aimed at the optimization of the characteristics of recalled results (information granules) that 
are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of 
the associative structures. 
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1. Introduction 

Associative memories have been intensively studied for several decades being driven by several 
fundamental and applied research. The fundamentals origin from the interest in intriguing ways for 
understanding how memories organize, store, and retrieve data. There are some biologically-inclined 
studies that also play a visible role [1-3]. The crux of the recall in associative memories is to produce 
(recall) an item associated with some available chunk of data being incomplete or noisy. 

The term “association” plays a pivotal role in human endeavors and goes back to the ideas of Hebbian 
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(correlation) learning and so-called correlation associative memories. The studies on associative 
memories reported in the existing literature revolve along concepts such as stability, recall properties 
(error), capacity, and robustness. Central to associative memories are the issues of knowledge representation, 
design practices, performance analysis, and optimization. 

The advances in fuzzy sets and neurocomputing have resulted in the emergence of so-called fuzzy 
associative memories (refer to [4-6], which highlight the main representative architectures of fuzzy 
associative memories). The pertinent design practices are discussed in [7-14], which all address the 
issues of stability, recall quality, and neural network-based realizations. The development of associative 
memories comes with a variety of frameworks, including logic-oriented [15] and quantum logic 
environments [16,17]. Cellular-based automata approach was studied in [18], graph-based approaches 
were presented in [19], and hierarchical structures were studied in [20]. The wealth of applications is 
deep and includes tackling parameter estimation and control problems [21,22], decision-support 
systems [23], and formal concept analysis [24]. 

This study contributes to the conceptual, architectural, and design–oriented enhancements of 
associative memories, and as such comes with several well-defined objectives that are implied by the 
established conceptual and application-driven goals listed below. 

(i) The construction of associations focused on the key structural dependencies among the data by 
spanning the associative memory (associative mapping) over the representatives of the data. We 
are proposing an algorithmic setting realized in the form of collaborative fuzzy clustering. 

(ii) The quantification of the quality of associative memories by bringing the ideas of information 
granules. Subsequently, we were able to deliver an efficient way of quality description of recall 
through the coverage and specificities that characterize the quality of recall results. 

(iii) The extension of the notion of bidirectionality to multi-directionality and a proposal of 
architectural extensions of bidirectional memories to network topologies of associative memories. 

All of these objectives exhibit a significant deal of originality by opening some new avenues of 
research and applications. 

The paper is structured in a way that we unveil the main concepts and ensuing algorithmic design 
practices. In Section 2, we start with by briefly highlighting the essence of associative mapping by 
characterizing it as an optimization problem. We advocate for its structure by showing that the 
mapping spans a collection of representatives of data for which associations are to be built. We identify 
some conceptual advantages and deliver an efficient way of building memories. Section 3 is focused on 
the algorithm behind the buildup of the structural core of memories, which creates a collaborative 
version of clustering followed by the optimization problem arising in conjunction of the optimal recall 
(Section 4). An allocation of information granularity providing an efficient way of describing the quality 
of the associative memories is formulated in Section 5 and then supplied with solutions (Section 6). Multi-
directional associative memories are discussed in Section 7, and we present out conclusions in Section 8. 

 
 

2. Bidirectional Associative Memories: Building Mappings Spanned 
over Data Representatives 

In a nutshell, a bidirectional associative memory can be regarded as a pair of mappings f: X  �Y and 
g: Y�X where, X and Y are subsets of associated items (data) positioned in the multidimensional spaces 
of real numbers Rn and Rm, respectively. The mappings are formed in such a way that they produce 
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minimal recall errors for any finite number of pairs of items stored in the memory. More specifically, f 
and g are constructed in such a manner that for all pairs of stored items (associations) (xk, yk)
x
k
∈ R

n
, y

k
∈ R

m , k=1,2,…, N, the following recall conditions are (approximately) satisfied, f(xk)≈ yk 

and g(yk)≈ xk, k=1,2,…, N. It is not possible to anticipate that the associative recall could be ideal. Some 
recall errors occur, and as a result, the ultimate objective of the overall design process is to develop the 
structure of the mappings (f and g) and to optimize their parameters in such a way that a certain 
performance index V (commonly shown as the sum of the squared errors ||. ||2) becomes minimized as 
follows: 

 

V = || x
k
− x̂

k
||2

k=1

N

∑ + || y
k
− ŷ

k
||2

k=1

N

∑                                                     (1) 

 
where, x̂

k
, ŷ

k
 are the recall results of the associated item (data), namely f (x

k
) = ŷ

k
 and g(y

k
) = x̂

k
. 

Note that we assessed the recall quality in both directions, viz. for the items in X and Y. 
The aim of the optimization, as noted earlier, is to minimize V by selecting the mappings from some 

classes of admissible mappings F and G and estimating the values of the parameters of f and g, say f(x,a) 
and g(y, b). This results in the following result of optimization: 

 
(fopt, gopt, aopt, bopt) = argMax f∈F,g∈G;a,b

V                                                 (2) 
 
What we are presenting here constitutes a radical shift from the main line of study in the sense that 

we are advocating that the essence and generality of associative mappings shouldn’t reflect numerous 
amounts of data but instead to build upon a collection of representatives of the association pairs. By 
focusing on the buildup of the associative memory on these landmarks, two motivating factors are 
worth pointing out, which are listed below. 

(i) We can avoid an immediate and direct reliance on noisy and distorted data. The prototypes are 
a kind of summarization of the data, and in this way, they capture the essence of the data and 
tend to ignore details that are most likely a result of noise manifestation in the data. 

(ii) The structure of the mapping focuses on the prototypes and the choice of the prototypes helps 
set up a certain tradeoff between detailed recall and noise immunities. 

Once the prototypes (representatives) have been formed, the details of the mapping are developed in 
terms of the detailed structure of the associative linkages, especially the parameters of the mappings and 
the way in which some interpolation/approximation capabilities are determined. 

From the design perspective, the problem naturally splits into two fundamental phases, as described 
below. 

(i) Building representatives (landmarks) of associative mappings and their refinements (optimization). 
This includes the realization of a certain form of the associative mapping spanned over a small 
number of representatives – information granules.  

(ii) The characterization of the quality (performance) of the associative memories. We demonstrate 
in this section that the memory’s quality can be efficiently described by means of information 
granules. By augmenting the existing numeric constructs and bringing a facet of information 
granularity (as a consequence yielding so-called granular associative memories), we deliver a 
quantitative view at the performance of the memory. 
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Next, we concisely present the underlying essence of our proposed approach. The landmarks that 
form the backbone of the associative mapping are developed through clustering (or fuzzy clustering) 
the data in X and Y, as shown in Fig. 1. 

 

 

 

Fig. 1. A concept of bidirectional recall realized with mappings f and g spanned over a collection of c 
prototypes; U and F stand for the partition matrices; α, β strengths of the collaboration. 

 
The prototypes that are formed because of clustering serve as the entities over which the mapping is 

formed. Clustering is a common way of determining the representatives of the overall dataset, where 
the obtained prototypes serve as points for which the associations are developed. In contrast to the 
commonly studied way of forming clusters, due to the clustering that needs to be completed in concert 
for data in X and Y at the same time, the generic scheme of clustering needs to be prudently revisited so 
that the prototypes in X and Y are determined (and optimized) together. Doing so calls for clustering 
that is completed in a collaborative manner. Once the prototypes have been constructed they are used 
to finalize the mapping. In this study, we provide a rule-based architecture of the associative mapping. 
The form of the mapping is realized on the basis of a collection of reference points (prototypes) v1, 
v2,…,vc that are defined in X, and the corresponding reference points (prototypes) w1, w2,…, wc are 
defined in Y. 

 
 

3. Collaborative Clustering and its Underlying Algorithm 

In the context of the requirements imposed on the formation of representatives (prototypes) of the 
data X and Y, we are introducing a generalized version of fuzzy clustering that can be regarded as a 
generalized version of fuzzy c-means (FCM). The use of FCM in the context of this study is beneficial 
because of the common usage of this clustering technique, especially in the realm of fuzzy set constructs 
(classifiers, predictors, control, etc.). To fully align the clustering procedure with the resulting 
associative mapping, we referred to the notation provided in Fig. 1. 

The objective function that guides the clustering process is described as follows: 
 

Q =
1

2
u
ik

2
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∑
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∑ d
ik
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2
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ik
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∑
i=1

c

∑                                               (3) 

 
This objective function is concerned with the clustering of data X. Here, U=[uik] and v1, v2, .., vc are 

the partition matrixes and prototypes, respectively. The expression dik stands for the Euclidean distance 
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(or its weighted version) between xk and the prototype vi. The prototypes positioned in Y are w1, w2,…, 
wc; whereas, the partition matrix is F=[fik], i=1,2,.., c; k=1,2,.., N. The structure of the objective function 
(3) consists of two components. The first one is related to the structure being revealed in X. The second 
one shows a level of agreement between the structures discovered simultaneously in X and Y. 

To proceed with optimization, we formed an augmented objective function Q1 by including a 
Lagrange multiplier to accommodate the constraint of the partition matrix: 

 

Q
1
=
1

2
u
ik

2

i=1

c

∑ d
ik

2
+
1

2
α (u

ik

i=1

c

∑ − f
ik
)
2
d
ik

2
+λ( u

ik
−1)

i=1

c

∑                                       (4) 

 
The derivatives of Q1 computed with respect to the entries of the partition matrix and the prototypes 

are set to zero, which are necessary conditions of the minimum of Q1: 
 

dQ
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+λ = 0
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Then: 
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                                                                    (6) 

 

As the sum of membership grades is equal to 1, u
st

s=1

c

∑ =1 we obtained:  
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and after some straightforward algebra one obtains:  

 

λ =

1

1

d
st

2

s=1

c

∑

                                                                       (8) 

 
Plugging (8) into (6) and the membership values of the partition matrix are finally obtained as: 
 

uik =
α

1+α
fik +

1

1+α

1

dik

2

d jk

2

j=1

c

∑
                                                         (9) 

 
i=1, 2, …,c,  k=1, 2, …, N. By zeroing the derivative dV/dvij=0, i=1, 2,…, c, j=1, 2,…, n, the optimal 
prototypes are computed as follows: 

 

                                                            

(10)
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Let us take a closer look at (9). If α = 0, we arrive at the partition matrix that is encountered in the 
standard FCM (viz. no collaboration present, α=0), namely: 

 

                                                                           

(11)

 
 
If α=1, the partition matrix is equally impacted by the structure produced by X without any 

collaboration and the partition matrix F reflecting a structure discovered in Y. If α tends to infinity, uik 
is equal to fik, which means that the structure in  X is completely imposed by the findings present in Y in 
terms of the partition F. 

For the collaborative clustering for the second data of Y, the formulation of the problem is presented 
in the same way. We consider the objective function of: 
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∑                                             (12) 

 
Here, the distance dik denotes the Euclidean distance computed for the data yk and the prototype wk. 
Proceeding with the same optimization as before, the obtained detailed formulas read as follows: 
Partition matrix F: 
 

fik =
β

1+ β
fik +

1

1+ β

1

dik

2

d jk

2

j=1

c

∑

                                                         (13) 

 
in the first term, it should be uik instead of fik prototypes: 

 

                                                            

(14)

 
 
We observed that the results of collaborative clustering (partition matrices and prototypes) are 

impacted by the intensity of collaboration (quantified in regards to the non-zero collaboration 
coefficients α and β). Obviously, the collaboration need not to be symmetric, and, hence, the values α 
and β can be independently set up. Choosing the values of these coefficients impacts the results by 
moving the position of the obtained prototypes. This flexibility can be utilized to further optimize the 
performance of the associative mappings. 

 
 

4. Optimization Mechanism in Collaborative Clustering 

The prototypes vi and wi exhibit a direct impact on the performance of the associative recall. The 
performance is quantified by summing up the distances between the original items and their associative 
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recalls. As we are concerned with bidirectional recall, the sum of errors V is composed of the two parts 
that quantify the difference between the original data and their recalled versions. The recall mappings 
that span the developed prototypes are expressed as follows: 

Recall completed from X to Y: 
 

ŷ
k
= A

i
(x

k
)w

i

i=1

c

∑                                                                 (15) 

 
Recall completed from Y and X: 
 

x̂
k
= B

i
(y

k
)v

i

i=1

c

∑                                                                 (16) 

 
where, Ai and Bi stand for the activation levels (membership grades) implied by the data in X and Y. 
More specifically: 

 

Ai (xk ) =
1

|| xk −vi ||
2

|| xk −v j ||
2

j=1

c

∑

   Bi (yk ) =
1

|| yk −wi ||
2

|| yk −w j ||
2

j=1

c

∑

                                        (17) 

 
Formally, for the fixed number of prototypes (c) the optimization problem is expressed as the 

minimization of the collaboration coefficients α and β, as: 
 

(αopt, βopt) = argMinα ,β≥0V
                                                     (18) 

 
The optimal values of the collaboration coefficients can be determined by using a population-based 

optimization (genetic algorithm, particle swarm, differential evolution, etc.), which is a sound 
alternative to the commonly used gradient-based techniques that are not feasible to use due to the non-
explicit nature of the gradient of V with respect to the optimized parameters. As there are only two 
arguments involved, a simple sweeping across the values of α and β is also a viable optimization 
alternative. 

 
 

5. Augmentation of Memories Through the Allocation of 
Information Granularity 

As expected, there are no ideal bidirectional associative memories in the sense that the recall error is 
not equal to zero no matter how complex the associative memory is. To deal with this problem, we 
generalized the construct to make it granular, which resulted in a ‘granular’ associative memory. The 
concepts of information granularity and information granules are fundamental in this setting. 
Information granularity [25] serves as an important design asset. This augmentation is accomplished by 
making the prototypes in the form of information granules that span the original numeric counterparts, 
such as Vi = G(vi) and Wi = G(wi), where, G denotes a mechanism of forming an information granule 
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applied to vi and wi. In the simplest version, information granules can be presented in the form of 
intervals (sets). This yields the recall results that occur in the form of information granules. We have 
recall completed from X to Y: 

 

Y = [A
i
(x)⊗G(v

i
)]=

i=1

⊕

c

∑ [A
i
(x)⊗V

i
]

i=1

⊕

c

∑                                              (19) 

 
recall completed from Y to X: 

 

Y = [B
i
(y)⊗G(w

i
)]=

i=1

⊕

c

∑ [B
i
(y)⊗W

i
]

i=1

⊕

c

∑                                             (20) 

 
where, X and Y are information granules of the recalled item, which are formed on the basis of the 
already obtained numerical recall results. The symbols of addition and multiplication in circles stress 
that the arguments are information granules, not numbers. The operations of addition and 
multiplication are implemented depending upon the formalism involved. In the case of intervals, there 
are the operations of interval addition and multiplication. In case of fuzzy sets, we were concerned with 
the algebraic operations governed by the extension principle. Note that the equations presented above 
for the recalled items are information granules due to the granular form of the prototypes. The level of 
information granularity (specificity) of Wi and Vi is implied by the introduction a positive level of 
information granularity ε, which makes the prototypes granular. The quality of the granular recall is 
quantified by counting how many times the result of the recall Xk (and Yk) includes (covers) the 
corresponding data yk and xk and how specific the recall results become. To explicitly articulate the level 
of information granularity allocated to the numeric prototypes, we used Wi(εi), with εi representing the 
level of information granularity of Wi. This entails that the resulting recall is an information granule of 
the corresponding level of information granularity δ. To stress the granular character of the recall 

results, we rewrote (19) as Y (δ) = [A
i
(x)⊗G(v

i
,ε

i
)]=

i=1

⊕

c

∑ [A
i
(x)⊗V

i
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i
)]
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⊕

c

∑ . 

Proceeding with the detailed formulas, we have the following characterization of information 
granules: average coverage for recalled items in Y: 

 

cov(Y) =
1

N
cov(y

k
,Y

k
)

k=1

N

∑                                                         (21) 

 
In the case of set information granules, cov(yk, Yk) is a binary predicate returning 1 if yk is included in 

Yk and is 0 otherwise. 
The average specificity of recalled items is in Y. The specificity is the measure that quantifies how 

detailed a certain information granule is. For a single element information granule, the specificity 
attains 1 and declines when the size of the information granule increases (higher values of εi). The 
specificity of the recall being completed in Y is determined as follows: 

 

sp(Y) =
1

N
sp(Y

k
)

k=1

N

∑                                                              (22) 
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Computing the quality of information granules for the recall completed in X is carried out in the 
same manner. 

The quality of the recall is implied by the high average coverage and by the high average value of the 
specificity measure, and these two measures are in conflict. A simple alternative is to take a product of 
these two as: 

 
T =  cov(Y)*sp(Y) + cov(X)*sp(X)                                                  (23) 

 
The values of T depend upon the values of the level of information granularity. The higher values of δ 

(implied by higher values of εi) make the coverage higher, and at the same time, the specificity is 
reduced. The plotting of the average specificity-average coverage is shown in Fig. 2, which provides a 
visualization of the relationships between these two performance indicators and their conflicting 
nature. Furthermore, the plot completed in the coverage-specificity coordinates is beneficial to 
identifying the level of information granularity where the two criteria are still satisfied to high extent 
building in this way a sound compromise. 

 

 
Fig. 2. Characteristics of coverage-specificity implied by various levels of information granularity ε. 

 
 

6. Two Ways of Forming Granular Associative Memories 

We are proposing to fundamentally different ways of forming information granules on the basis of 
the numeric prototypes. In short, the granule has to be reflective of the characteristics of the data X 
and Y. 

 
Uniform allocation of information granularity 
The prototypes are made granular by using a certain level of information granularity ε and forming 

granular prototypes around their numeric counterparts. The granular prototypes are built as a 
geometric construct governed by the equation: 

 
Vi(ε) =  {x| ||x-vi||

2
                                                       (24) 

 
It is noticeable that assuming the weighted Euclidean distance, the geometry of information granules 

is a circular shape. All prototypes come with the same level of information granularity ε. The choice of a 
suitable value of ε can be guided by analyzing the quality of granular results of recall by analyzing the 

≤ nε
2}
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coverage of the specificity plot, as shown in Fig. 2, and by selecting ε for which one achieves high values 
of coverage without substantial reductions in the values of specificity. 

 
Formation of information granules on the basis of the local data characteristics 
In this method, the granular prototype is formed by invoking the principle of justifiable granularity 

[25]. This principle supports the development of justifiable information granules, viz. the granules that 
are supported by experimental evidence while being semantically sound, viz. specific enough. The 
optimization of these two already discussed criteria gives rise to the information granule. 

The advantage of this method comes with the explicit reliance on the local characteristics of the data 
positioned around the prototypes. This makes the granular prototypes reflective of the nature of the 
data and of different levels of information granularity, where we have Vi(εi) and Wi(εi). A certain 
shortcoming is the inherent computing overhead. 

 
 

7. Multi-Directional Associative Memories: Selected Categories of 
Topologies 

The associative memory can assume several key topologies that reflect the nature of the problem and 
in a way in which associations are established between data sources, as shown in Fig. 3. 

 
One to one associative memory 
Both one–directional and bidirectional structures are envisioned. Two sources of data X and Y are 

considered, and they have already been discussed in this study. The optimization problem is focused on 
the building landmarks of the mapped minimizing recall error. This situation is typical in system 
modeling where a one-way of association is typical for any model. More specifically, what has been 
presented above is a Takagi-Sugeno fuzzy rule-based model. To highlight the essence of the developed 
construct, note that Ai(x) is a degree of matching (activation) of the i-th reference (landmark) point vi. 
The conclusion part of the i-th rule is a constant function that is formed as the prototype wi. The 
number of rules is equal to the number of clusters. If we view X as the space of independent variables, 
the recall completed in the direction from X to Y corresponds to the problem of the determination of 
the output. If the values of y that are located in Y are given and treated as a vector of effects, then the 
recall in X corresponds to the resulting vector of causes. 

 
Many to one and one to many associative memories 
In this case, we encountered a multiplicity of data sources X1, X2,…, Xr and any Y1, Y2,…, Yp. One 

typical alternative is to have a number of data sources X1,…, Xr interacting with a single data source Y. 
In terms of applications, the output located in the output space Y is a result of considering many 
factors. Associations are presented and separately developed in the spaces X1,…, Xr and are mapped on 
Y.  This option can be linked with systems in which a certain input space comes in a collection of 
subspaces that are available locally and the output is observed in Y. The other option is visualized in Fig. 
3(b), where a single data space X implies the outputs that are localized in Y and Z. 
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Multi-level structure of associations 
In this case, we envisioned a topology where associations among spaces are cascaded. An illustrative 

example is shown in Fig. 3(c), where associations are built between X and Z and Z and Y, and the 
number of intermediate levels could be higher. It is worth noting that such situations occur when we do 
not have any direct linkage between X and Y and they can be formed indirectly with the aid of the 
associations in X and Z and Z and Y. In other words, this option is pursued when X and Y are not 
present together and the structure could be revealed by invoking the intermediate data source Z and 
forming the related associations. 

 

 

(a) 
 

 

 

(b) 
 

 

(c) 
 

Fig. 3. Examples of multi-directional associations. 
 
As there are a larger number of data spaces and ensuing associations to be established, there are a 

larger number of collaboration coefficients to deal with when clustering. Here, a viable optimization 
framework is to resort to genetic algorithms (GAs), particle swarm optimizations (PSOs), or other 
techniques located in this category of population-based algorithms. 

 
 

8. Conclusions 

In this study, we have provided a new direction in the design of bidirectional associative memories. 
The proposed development environment comes with several outstanding features. First, the 
construction of the best mapping is formed with the aid of landmarks (prototypes) whose position in 
the data spaces captures the key properties of the data. The underlying clustering technique involves the 
mechanism of collaboration, which helps distribute the prototypes in such a way that the 
bidirectionality (or multi-directionality) of the recall is fully reflected. Second, the quality of the non-
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ideal associative recall is quantified through information granules, and we showed that a level of 
information granularity can be optimized by the criteria of data coverage and specificity. Third, the 
concept of multi-directional recall was introduced, which is a result of a generalized multi-source of 
networks of associations that extend far beyond the classic architectures of the existing associative 
memories. 

Future research studies can naturally revolve around further investigations of the ideas introduced 
here, especially at the level of algorithmic details. Different formalisms of information granules beyond 
the intervals that we have addressed in this study can be explored. There are also further applied studies 
that could be carried out, in particular in data analytics. 
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