• Title/Summary/Keyword: Expectation and Maximization

Search Result 215, Processing Time 0.036 seconds

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Bayesian Image Reconstruction Using Edge Detecting Process for PET

  • Um, Jong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1565-1571
    • /
    • 2005
  • Images reconstructed with Maximum-Likelihood Expectation-Maximization (MLEM) algorithm have been observed to have checkerboard effects and have noise artifacts near edges as iterations proceed. To compensate this ill-posed nature, numerous penalized maximum-likelihood methods have been proposed. We suggest a simple algorithm of applying edge detecting process to the MLEM and Bayesian Expectation-Maximization (BEM) to reduce the noise artifacts near edges and remove checkerboard effects. We have shown by simulation that this algorithm removes checkerboard effects and improves the clarity of the reconstructed image and has good properties based on root mean square error (RMS).

  • PDF

Human-Livestock Classifier by Using Fuzzy Bayesian Algorithm (퍼지-베이시안을 이용한 인간.가축 분류)

  • Oh, Myung-Jae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1941-1945
    • /
    • 2011
  • In this paper, we propose a real-time classifier to distinguish humans from livestock by using the spatial integral. The image-difference method and the Expectation Maximization are used to reduce noises in input image. A histogram analysis based on Simulated Annealing and the fuzzy-Bayesian algorithm are used to classify human and livestock. Finally, the experiment results show the validity of the proposed method.

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

(Lip Recognition Using Active Shape Model and Gaussian Mixture Model) (Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식)

  • 장경식;이임건
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.454-460
    • /
    • 2003
  • In this paper, we propose an efficient method for recognizing human lips. Based on Point Distribution Model, a lip shape is represented as a set of points. We calculate a lip model and the distribution of shape parameters using Principle Component Analysis and Gaussian mixture, respectively. The Expectation Maximization algorithm is used to determine the maximum likelihood parameter of Gaussian mixture. The lip contour model is derived by using the gray value changes at each point and in regions around the point and used to search the lip shape in a image. The experiments have been performed for many images, and show very encouraging result.

A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System (EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계)

  • 오범진;곽근창;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a fuzzy rule extraction method using EM(Expectation-Maximization) algorithm and a design method of adaptive neuro-fuzzy control. EM algorithm is used to estimate a maximum likelihood of a GMM(Gaussian Mixture Model) and cluster centers. The estimated clusters is used to automatically construct the fuzzy rules and membership functions for ANFIS(Adaptive Neuro-Fuzzy Inference System). Finally, we applied the proposed method to the water temperature control system and obtained better results with respect to the number of rules and SAE(Sum of Absolute Error) than previous techniques such as conventional fuzzy controller.

Improved Expectation and Maximization via a New Method for Initial Values (새로운 초기치 선정 방법을 이용한 향상된 EM 알고리즘)

  • Kim, Sung-Soo;Kang, Jee-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.416-426
    • /
    • 2003
  • In this paper we propose a new method for choosing the initial values of Expectation-Maximization(EM) algorithm that has been used in various applications for clustering. Conventionally, the initial values were chosen randomly, which sometimes yields undesired local convergence. Later, K-means clustering method was employed to choose better initial values, which is currently widely used. However the method using K-means still has the same problem of converging to local points. In order to resolve this problem, a new method of initializing values for the EM process. The proposed method not only strengthens the characteristics of EM such that the number of iteration is reduced in great amount but also removes the possibility of falling into local convergence.

A Regression based Unconstraining Demand Method in Revenue Management (수입관리에서 회귀모형 기반 수요 복원 방법)

  • Lee, JaeJune;Lee, Woojoo;Kim, Junghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.467-475
    • /
    • 2015
  • Accurate demand forecasting is a crucial component in revenue management(RM). The booking data of departed flights is used to forecast the demand for future departing flights; however, some booking requests that were denied were omitted in the departed flights data. Denied booking requests can be interpreted as censored in statistics. Thus, unconstraining demand is an important issue to forecast the true demands of future flights. Several unconstraining methods have been introduced and a method based on expectation maximization is considered superior. In this study, we propose a new unconstraining method based on a regression model that can entertain such censored data. Through a simulation study, the performance of the proposed method was evaluated with two representative unconstraining methods widely used in RM.

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

The Study of Direction Finding Algorithms for Coherent Multiple Signals in Uniform Circular Array (등각원형배열을 고려한 코히어런트 다중신호 방향탐지 기법 연구)

  • Park, Cheol-Sun;Lee, Ho-Joo;Jang, Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, the performance of AP(Alternating Projection) and EM(Expectation Maximization) algorithms is investigated in terms of detection of multiple signals, resolvability of coherent signals and the efficiency of sensor array processing. The basic idea of these algorithms is utilization of relaxation technique of successive 1D maximization to solve a direction finding problem by maximizing the multidimensional likelihood function. It means that the function is maximized over only for a single parameter while the other parameters are fixed at each step of the iteration. According to simulation results, the algorithms showed good performance for both incoherent and coherent multiple signals. Moreover, some advantages are identified for direction finding with very small samples and fast convergence. The performance of AP algorithm is compared with that of EM using multiple criteria such as the number of sensor, SNR, the number of samples, and convergence speed over uniform circular array. It is resulted AP algorithm is superior to EM overally except for one criterion, convergence speed. Especially, for EM algorithm there is no performance difference between incoherent and coherent case. In conclusion, AP and EM are viable and practical alternatives, which can be applied to a direction under due to the resolvability of multi-path signals, reliable performance and no troublesome eigen-decomposition of the sample-covariance matrix.