• Title, Summary, Keyword: Euler-Maruyama

Search Result 6, Processing Time 0.025 seconds

EULER-MARUYAMA METHOD FOR SOME NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH JUMP-DIFFUSION

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In this paper we discussed Euler-Maruyama method for stochastic differential equations with jump diffusion. We give a convergence result for Euler-Maruyama where the coefficients of the stochastic differential equation are locally Lipschitz and the pth moments of the exact and numerical solution are bounded for some p > 2.

NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATION CORRESPONDING TO CONTINUOUS DISTRIBUTIONS

  • Amini, Mohammad;Soheili, Ali Reza;Allahdadi, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.709-720
    • /
    • 2011
  • We obtain special type of differential equations which their solution are random variable with known continuous density function. Stochastic differential equations (SDE) of continuous distributions are determined by the Fokker-Planck theorem. We approximate solution of differential equation with numerical methods such as: the Euler-Maruyama and ten stages explicit Runge-Kutta method, and analysis error prediction statistically. Numerical results, show the performance of the Rung-Kutta method with respect to the Euler-Maruyama. The exponential two parameters, exponential, normal, uniform, beta, gamma and Parreto distributions are considered in this paper.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

Euler-Maruyama Numerical solution of some stochastic functional differential equations

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.13-30
    • /
    • 2007
  • In this paper we study the numerical solutions of the stochastic functional differential equations of the following form $$du(x,\;t)\;=\;f(x,\;t,\;u_t)dt\;+\;g(x,\;t,\;u_t)dB(t),\;t\;>\;0$$ with initial data $u(x,\;0)\;=\;u_0(x)\;=\;{\xi}\;{\in}\;L^p_{F_0}\;([-{\tau},0];\;R^n)$. Here $x\;{\in}\;R^n$, ($R^n$ is the ${\nu}\;-\;dimenional$ Euclidean space), $f\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^n,\;g\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^{n{\times}m},\;u(x,\;t)\;{\in}\;R^n$ for each $t,\;u_t\;=\;u(x,\;t\;+\;{\theta})\;:\;-{\tau}\;{\leq}\;{\theta}\;{\leq}\;0\;{\in}\;C([-{\tau},\;0];\;R^n)$, and B(t) is an m-dimensional Brownian motion.

  • PDF

GENERATING SAMPLE PATHS AND THEIR CONVERGENCE OF THE GEOMETRIC FRACTIONAL BROWNIAN MOTION

  • Choe, Hi Jun;Chu, Jeong Ho;Kim, Jongeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1241-1261
    • /
    • 2018
  • We derive discrete time model of the geometric fractional Brownian motion. It provides numerical pricing scheme of financial derivatives when the market is driven by geometric fractional Brownian motion. With the convergence analysis, we guarantee the convergence of Monte Carlo simulations. The strong convergence rate of our scheme has order H which is Hurst parameter. To obtain our model we need to convert Wick product term of stochastic differential equation into Wick free discrete equation through Malliavin calculus but ours does not include Malliavin derivative term. Finally, we include several numerical experiments for the option pricing.

NUMERICAL METHODS FOR SOME NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

  • El-Borai, Mahmoud M.;El-Nadi, Khairia El-Said;Mostafa, Osama L.;Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper we study the numerical solutions of the stochastic differential equations of the form $$du(x,\;t)=f(x,\;t,\;u)dt\;+\;g(x,\;t,\;u)dW(t)\;+\;\sum\limits_{|q|\leq2m}\;A_q(x,\;t)D^qu(x,\;t)dt$$ where $0\;{\leq}\;t\;{\leq}\;T,\;x\;{\in}\;R^{\nu}$, ($R^{nu}$ is the $\nu$-dimensional Euclidean space). Here $u\;{\in}\;R^n$, W(t) is an n-dimensional Brownian motion, $$f\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^n,\;g\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^{n{\times}n},$$, and $$A_q\;:\;R^{\nu}\;{\times}\;[0,\;T]\;{\rightarrow}\;R^{n{\times}n}$$ where ($A_q,\;|\;q\;|{\leq}\;2m$) is a family of square matrices whose elements are sufficiently smooth functions on $R^{\nu}\;{\times}\;[0,\;T]\;and\;D^q\;=\;D^{q_1}_1_{\ldots}_{\ldots}D^{q_{\nu}}_{\nu},\;D_i\;=\;{\frac{\partial}{\partial_{x_i}}}$.

  • PDF