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CONVERGENCE OF THE EULER-MARUYAMA METHOD

FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN

BY G-BROWNIAN MOTION

Cunxia Liu and Wen Lu

Abstract. In this paper, we deal with the Euler-Maruyama (EM)

scheme for stochastic differential equations driven by G-Brownian mo-

tion (G-SDEs). Under the linear growth and the local Lipschitz condi-
tions, the strong convergence as well as the rate of convergence of the EM

numerical solution to the exact solution for G-SDEs are established.

1. Introduction

In the last decade, the fundamental theory of G-expectation, G-Brownian
motion and its related stochastic calculus were established in Peng [18–20], due
to its potential applications in uncertain problems, risk measures as well as the
super-hedging in finance. Since then, a lot of works have been devoted to the
study of G-expectation and G-Brownian motion, one can see Hu and Peng
[9], Denis et al. [6], Li and Peng [14], Soner et al. [21], Song [22, 23] and the
references therein. Under the G-framework, stochastic differential equations
driven by G-Brownian motion (G-SDEs) were introduced in Peng [20]. The
solvability of G-SDEs has been obtained in Peng [20] and Gao [7] under the
Lipschitz assumptions on the coefficients. Since the global Lipschitz condition
is somewhat restrict in applications, some non-Lipschitz conditions were intro-
duced. For instance, Bai and Lin [1] proposed the existence and uniqueness
of solutions for G-SDEs under the integral-Lipschitz conditions, Li et al. [12]
showed the existence and uniqueness result under a locally Lipschitz condition
and a Lyapunov-type condition on the coefficients.

It is known that the explicit solutions for SDEs or G-SDEs are often dif-
ficult to obtain, so as an alternative, the numerical solutions are considered
naturally. For the classical framework, a lot of literature has been focused
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on the convergence of the EM schemes for SDEs under reasonable conditions,
see for example, Kloeden and Platen [11] and Mao [16] for SDEs with global
Lipschitz condition, Higham et al. [8] for SDEs with local Lipschitz condition
and the linear growth condition. For SDEs without the linear growth condi-
tion, Hutzenthaler et al. [10] developed the tamed EM schemes, and Mao [17]
developed the truncated EM schemes. Recently, Li, Mao, Yin [13] presented
an approximation technique to study truncated EM schemes for SDEs in finite
or infinite horizons. Wu et al. [25] showed the convergence of the numerical
solutions for pantograph stochastic functional differential equations. On the
other hand, the convergence rates of numerical approximations were studied
extensively, see Higham et al. [8], Yuan and Mao [27], Bao and Yuan [4], Bao
et al. [3], Bao and Huang [2] and the references therein.

Accordingly, so far as we know, there are very few works on the numerical
solution for G-SDEs. Yang and Zhao [26] proposed the numerical simulations
of the G-Brownian motion B and the related quadratic variation process ⟨B⟩.
Ullah and Faizullah [24] showed the strong convergence of the EM approxi-
mate solutions for G-SDEs under the linear growth and the global Lipschitz
assumptions on the coefficients. Li and Yang [15] proved the convergence of
the stochastic theta solution and the asymptotical stability of the backward
EM numerical simulation for neutral SDEs in the G-framework. Deng et al. [5]
showed the stability equivalence between the G-SDE with delay and the corre-
sponding Euler-Maruyama numerical method.

Motivated by the aforementioned works, we aim to investigate the EM
scheme for G-SDEs. With the local Lipschitz and the linear growth assump-
tions, our first goal of this paper is to study the strong convergence of the EM
numerical solution for G-SDEs, and then, it allows us to derive the rate of con-
vergence. It should be pointed out that our results are obtained by a technique
similar to that in Higham et al. [8] and Yuan and Mao [27], but the model is
nontrivial due to the uncertainty of G-Brownian motion. Moreover, we hope
that the current discussion will play a fundamental role for more in-depth study
of the numerical solutions for G-SDEs.

The rest of the paper is organized as follows. In Section 2, we propose some
notations and preliminaries. In Section 3, we discuss the strong convergence of
the EM numerical solution for G-SDEs. In Section 4, the rate of convergence
is provided.

2. Preliminaries

In this section, we propose some basic notations and results in the framework
of G-expectation, the readers are referred to Peng [18], Denis et al. [6] and Gao
[7] for more details. In the sequel, Rn represents the real n-dimensional space
and for x ∈ Rn, |x| denotes its Euclidean norm. Let Ω be the space of all Rd-
valued continuous paths with ω0 = 0 equipped with the distance ρ

(
ω1, ω2

)
:=
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N=1 2

−N
((
maxt∈[0,N ]

∣∣ω1
t − ω2

t

∣∣) ∧ 1
)
and let B(Ω) be the Borel σ-algebra of

Ω.
For t ∈ [0,∞), we list the following notations:

• Bt(ω) := ωt be the canonical process;
• Ωt = {ω·∧t : ω ∈ Ω}, Ft := B (Ωt);
• L0(Ω) : the space of all B(Ω)-measurable real functions;
• L0 (Ωt) : the space of all B (Ωt)-measurable real functions;
• Bb(Ω) : all bounded elements in L0(Ω); Bb (Ωt) := Bb(Ω) ∩ L0 (Ωt);
• Cb(Ω) : all continuous elements in Bb(Ω); Cb (Ωt) := Cb(Ω) ∩ L0 (Ωt);
• Lip

(
Rd×n

)
: the collection of all bounded and Lipschitz functions on Rd×n;

• Lip(Ω) :=
{
φ(Bt1 , . . . , Btn) : n ≥ 1, 0 ≤ t1 < · · · < tn < ∞, φ ∈ Lip(Rd×n)

}
;

• Lip (Ωt) := Lip(Ω) ∩ L0 (Ωt).

For each p ≥ 1, we denote by Lp
G(Ω) the completion of Lip(Ω) under the

norm ∥ · ∥p := E [| · |p]
1
p , where E(·) denotes the related G-expectation on

(Ω, Lip(Ω)). Similarly, we can define Lp
G (ΩT ) for each 0 ≤ T < ∞. In Denis

et al. [6], they derived that there exists a weakly compact set P of probability
measures defined on (Ω,B(Ω)) such that

E[Y ] = sup
P∈P

EP [Y ] for all Y ∈ L1
G(Ω),

where EP is the linear expectation with respect to probability measure P . For
this P, the associated capacity is defined by C(A) := supP∈P P (A), A ∈ B(Ω).

Definition 1. A set A ∈ B(Ω) is called polar if C(A) = 0. A property is said
to hold quasi surely (q.s., in short) if it holds outside a polar set.

We define

Mp,0
G ([0, T ]) := {ηt =

N−1∑
i=0

ξi1[ti,ti+1)(t) : ∀N ∈ N, 0 = t0 < · · · < tN = T,

ξi ∈ Lp
G (Ωti)}.

We denote by Mp
G([0, T ]) the completion of Mp,0

G ([0, T ]) under the norm:

∥η∥Mp
:=

(
E

[
1

T

∫ T

0

|ηt|p dt

])1/p

.

In this paper we consider the following n-dimensional stochastic differential
equation in the G-framework

(1) dx(t) = f(x(t))dt+ g(x(t))d⟨B⟩t + h(x(t))dBt, t ∈ [0, T ]

with given initial condition x(0) = x0 ∈ Rn, where Bt is a one-dimensional G-
Brownian motion under the G-expectation space (Ω, Lip(Ω),E(·)) with G(a) :=
1
2E[aB

2
1 ] =

1
2

(
σ̄2a+ − σ2a−

)
for a ∈ R, where σ̄2 = E[B2

1 ], σ
2 = −E[−B2

1 ],
0 ≤ σ ≤ σ̄ < ∞. The quadratic variation process of G-Brownian motion Bt is
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denoted by ⟨B⟩t. A process x(t) ∈ M2
G ([0, T ] ;Rn) with t-continuous path and

satisfying the G-SDE (1) is said to be its solution.
We impose the following conditions on the coefficients f , g and h:
(A1) Assume that f, g, h : Rn → Rn satisfy the local Lipschitz condition:

for each R = 1, 2, . . ., there exist positive constants L1(R), L2(R) and L3(R)
such that

|f(x)− f(y)| ≤ L1(R)|x− y|, |g(x)− g(y)| ≤ L2(R)|x− y|
and

|h(x)− h(y)| ≤ L3(R)|x− y|
for all x, y ∈ Rn with |x| ∨ |y| ≤ R.

(A2) Assume that f , g, h satisfy the linear growth condition: there is a
constant u > 0 such that

|f(x)| ∨ |g(x)| ∨ |h(x)| ≤ u(1 + |x|)
for all x ∈ Rn.

Remark 2.1. Under assumptions (A1) and (A2), the G-SDE (1) has a unique
solution (see [12]).

The following Burkholder-Davis-Gundy type inequalities in theG-framework
are borrowed from [7].

Lemma 2.2. For each p ≥ 1, η ∈ Mp
G([0, T ]) and 0 ≤ t ≤ T , we have

E
[
sup

0≤r≤t

∣∣∣∣∫ r

0

ηsd⟨B⟩s
∣∣∣∣p] ≤ σ̄2ptp−1

∫ t

0

E [|ηs|p] ds.

Lemma 2.3. Let p ≥ 2, η ∈ Mp
G([0, T ]) and 0 ≤ t ≤ T . Then,

E
[
sup

0≤r≤t

∣∣∣∣∫ r

0

ηsdBs

∣∣∣∣p] ≤ C(p)σ̄pt
p
2−1

∫ t

0

E [|ηs|p] ds,

where C(p) is a positive constant independent of η.

3. Strong convergence

In this section, we prove that the strong convergence of the EM approximate
solution for the G-SDE (1) under the local Lipschitz and the linear growth
conditions.

We now set up the EM approximate solution for the G-SDE (1). Given a
stepsize 0 < ∆ < 1, let tk = k∆ for k ≥ 0. Then the discrete EM approximate
solution yk (≈ x(tk)) for the G-SDE (1) is defined by

yk+1 = yk + f (yk)∆ + g (yk)∆⟨B⟩k + h (yk)∆Bk, k ≥ 0, y0 = x0,

where ∆⟨B⟩k = ∆⟨B⟩tk+1
− ∆⟨B⟩tk , ∆Bk = Btk+1

− Btk . We extend the
discrete solution to the continuous one by

y(t) = y0 +

∫ t

0

f(ȳ(s))ds+

∫ t

0

g(ȳ(s))d⟨B⟩s +
∫ t

0

h(ȳ(s))dBs, t ∈ [0, T ] ,
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where ȳ(t) is defined by ȳ(t) := yk for t ∈ [tk, tk+1), it is obvious that y(tk) =
ȳ(tk) = yk.

Lemma 3.1. Under assumptions (A1) and (A2), for any given p ≥ 2, there
is a constant K(p) := K(p, T, y0, u, σ̄) such that

E
[

sup
0≤t≤T

|y(t)|p
]
∨ E

[
sup

0≤t≤T
|x(t)|p

]
≤ K(p).

Proof. By the Hölder inequality, we have

|y(t)|p ≤ 4p−1

[
|x0|p + T p−1

∫ t

0

|f(ȳ(s))|pds

+

∣∣∣∣∫ t

0

g(ȳ(s))d⟨B⟩s
∣∣∣∣p + ∣∣∣∣∫ t

0

h(ȳ(s))dBs

∣∣∣∣p
]
.

Taking G-expectation on both sides yields that

E
[

sup
0≤t≤T

|y(t)|p
]
≤ 4p−1

[
|x0|p + T p−1

∫ T

0

E|f(ȳ(s))|pds

+ E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

g(ȳ(s))d⟨B⟩s
∣∣∣∣p
)

+ E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

h(ȳ(s))dBs

∣∣∣∣p
)]

.

(2)

By Lemmas 2.2 and 2.3, we obtain

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

g(ȳ(s))d⟨B⟩s
∣∣∣∣p
]
≤ σ̄2pT p−1

∫ T

0

E|g(ȳ(s))|pds

and

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

h(ȳ(s))dBs

∣∣∣∣p
]
≤ σ̄pC(p)E

[∫ T

0

|h(ȳ(s))|2ds

]p/2

≤ σ̄pC(p)T p/2−1

∫ T

0

E|h(ȳ(s))|pds.

Substituting this into (2), using the linear growth condition, we have

E
[

sup
0≤t≤T

|y(t)|p
]
≤ 4p−1

[
|y0|p + Γ1

∫ T

0

(1 + E|ȳ(s)|p)ds

]
,

where Γ1 := 2p−1up(T p−1+ σ̄2pT p−1+ σ̄pC(p)T p/2−1). Applying the Gronwall
inequality we obtain

E
[

sup
0≤t≤T

|y(t)|p
]
≤ K(p).
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Similarly, we can show that

E
[

sup
0≤t≤T

|x(t)|p
]
≤ K(p).

The proof is complete. □

Theorem 3.2. Let assumptions (A1) and (A2) hold. Then, the EM approxi-
mate solution for the G-SDE (1) satisfies

lim
∆→0

E
[

sup
0≤t≤T

|x(t)− y(t)|2
]
= 0.

Proof. First, we define

τR := inf{t ≥ 0 : |y(t)| ≥ R}, ρR := inf{t ≥ 0 : |x(t)| ≥ R}, θR := τR ∧ ρR

and

e(t) := x(t)− y(t).

Note that the Young inequality: for r−1 + q−1 = 1

ab ≤ δ

r
ar +

1

qδq/r
bq ∀ a, b, δ > 0.

We thus have for any δ > 0 and p > 2

E
[

sup
0≤t≤T

|e(t)|2
]
= E

[
sup

0≤t≤T
|e(t)|21{τR>T, ρR>T}

]
+ E

[
sup

0≤i≤T
|e(t)|21{τR≤T or ρR≤T}

]
≤ E

[
sup

0≤t≤T
|e (t ∧ θR)|2 1{θR>T}

]
+

2δ

p
E
[

sup
0≤t≤T

|e(t)|p
]

+
1− 2

p

δ2/(p−2)
C (τR ≤ T or ρR ≤ T ) .

(3)

By Lemma 3.1, we have

E
[

sup
0≤t≤T

|e(t)|p
]
≤ 2p−1E

[
sup

0≤t≤T
(|x(t)|p + |y(t)|p)

]
≤ 2pK(p)

and

C (τR ≤ T or ρR ≤ T ) ≤ C (τR ≤ T ) + C (ρR ≤ T )

≤ E

[
1{τR≤T}

|y (τR)|P

Rp

]
+ E

[
1{ρR≤T}

|x (ρR)|P

Rp

]

≤ 1

Rp
E
[

sup
0≤t≤T

|y(t)|p
]
+

1

Rp
E
[

sup
0≤t≤T

|x(t)|p
]

≤ 2
K(p)

Rp
.
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Hence, in (3),

E
[

sup
0≤t≤T

|e(t)|2
]
≤ E

[
sup

0≤t≤T
|x (t ∧ θR)− y (t ∧ θR)|2

]
+

2p+1δK(p)

p
+

(p− 2)2K(p)

pδ2/(p−2}Rp
.

(4)

Now we bound the first term on the right-hand side of (4). In view of

y (t ∧ θR) := y0 +

∫ t∧θR

0

f(y(s))ds+

∫ t∧θR

0

g(y(s))d⟨B⟩s +
∫ t∧θR

0

h(y(s))dBs,

and the Cauchy-Schwartz inequality, we have

|x(t ∧ θR)− y(t ∧ θR)|2

=

∣∣∣∣∣
∫ t∧θR

0

f(x(s))− f(ȳ(s))ds+

∫ t∧θR

0

g(x(s))− g(ȳ(s))d⟨B⟩s

+

∫ t∧θR

0

h(x(s))− h(ȳ(s))dBs

∣∣∣∣∣
2

≤ 3

[
T

∫ t∧θR

0

∣∣∣f(x(s))− f(ȳ(s))
∣∣∣2ds+ ∣∣∣ ∫ t∧θR

0

g(x(s))− g(ȳ(s))d⟨B⟩s
∣∣∣2

+
∣∣∣ ∫ t∧θR

0

h(x(s))− h(ȳ(s))dBs

∣∣∣2]

≤ 3

[
T

∫ t

0

I[0,θR]

∣∣∣f(x(s))− f(ȳ(s))
∣∣∣2ds+ ∣∣∣ ∫ t

0

I[0,θR]g(x(s))− g(ȳ(s))d⟨B⟩s
∣∣∣2

+
∣∣∣ ∫ t

0

I[0,θR]h(x(s))− h(ȳ(s))dBs

∣∣∣2] .
Then, for any τ ≤ T , with the help of (A1) and Lemmas 2.2 and 2.3, we have

E
[
sup

0≤t≤τ
|x (t ∧ θR)− y (t ∧ θR)|2

]
≤ 3

(
L2
1(R)T + L2

2(R)σ̄2C(2) + L2
3(R)σ̄4T

)
E
∫ τ∧θR

0

|x(s)− ȳ(s)|2ds

≤ 6L2(R)
(
T + σ̄2C(2) + σ̄4T

)
× E

∫ τ∧θR

0

[
|x(s)− y(s)|2 + |y(s)− ȳ(s)|2

]
ds

≤ 6L2(R)
(
T + σ̄2C(2) + σ̄4T

)
×

[
E
∫ τ

0

|x (s ∧ θR)− y (s ∧ θR)|2 ds+ E
∫ τ∧θR

0

|y(s)− ȳ(s)|2ds

]
,

(5)
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where L(R) := max{L1(R), L2(R), L3(R)}. Given s ∈ [0, T ∧ θR), let ks be the
integer for which s ∈ [tks

, tks+1), and noting that ȳ(s) = yks
, we have

y(s)− ȳ(s) =

∫ s

tks

f(ȳ(s))ds+

∫ s

tks

g(ȳ(s))d⟨B⟩s +
∫ s

tks

h(ȳ(s))dBs

= f (yks
) (s− tks

) + g (yks
)
(
⟨B⟩s − ⟨B⟩tks

)
+ h (yks

)
(
Bs −Btks

)
.

Thus,

|y(s)− ȳ(s)|2 ≤ 3
[
|f (yks

)|2 ∆2 + |g (yks
)|2
∣∣⟨B⟩s − ⟨B⟩tks

∣∣2
+ |h (yks

)|2
∣∣Bs −Btks

∣∣2] .(6)

By (A1), for |y| ≤ R we have

|f(y)|2 ∨ |g(y)|2 ∨ |h(y)|2 ≤ 2
(
L2(R)|y|2 +m2

0

)
,

where m0 := |f(0)| ∨ |g(0)| ∨ |h(0)|. Hence, in (6),

|y(s)− ȳ(s)|2 ≤ 6(L2(R)|y|2 +m2
0)(∆

2 + |⟨B⟩s − ⟨B⟩tks
|2 +

∣∣Bs −Btks

∣∣2).
Integrating and then taking G-expectation on both sides, for any τ ≤ T , by
Corollary 5.5 in [20], we get

E
∫ τ∧θR

0

|y(s)− ȳ(s)|2ds

≤ 6

∫ τ

0

E
(
L2(R)|yks |2 +m2

0

) (
∆2 + |⟨B⟩s − ⟨B⟩tks

|2 + |Bs −Btks
|2
)
ds

≤ 6

∫ T

0

(
L2(R)E|yks

|2 +m2
0

) (
∆2 + σ̄4∆2 + σ̄2∆

)
ds

≤ 6T
(
L2(R)K(p)

2
p +m2

0

) (
∆+ σ̄4∆+ σ̄2

)
∆

≤ 6T
(
L2(R)K(p)

2
p +m2

0

) (
1 + σ̄4 + σ̄2

)
∆.

Substituting it into (5), we have

E
[
sup

0≤t≤τ
|x (t ∧ θR)− y (t ∧ θR)|2

]
≤ U1

(
L4(R)K(p)

2
p + L2(R)m2

0

)
∆

+ 6L2(R)
(
T + σ̄2C(2) + σ̄4T

) ∫ τ

0

E[ sup
0≤r≤s

|x (r ∧ θR)− y (r ∧ θR)|2]ds,

where U1 := 36T
(
T + σ̄2C(2) + σ̄4T

) (
1 + σ̄4 + σ̄2

)
. Applying the Gronwall

inequality, we have

E
[
sup

0≤t≤τ
|x (t ∧ θR)− y (t ∧ θR)|2

]
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≤ U1

(
L4(R)K(p)

2
p + L2(R)m2

0

)
∆e6L

2(R)T(T+σ̄2C(2)+σ̄4T)

and then

E
[

sup
0≤t≤T

|e(t)|2
]
≤ U1

(
L4(R)K(p)

2
p + L2(R)m2

0

)
∆e6L

2(R)T(T+σ̄2C(2)+σ̄4T)

+
2p+1δK(p)

p
+

(p− 2)2K(p)

pδ2/(p−2}Rp
.

Given any ϵ > 0, we can choose δ > 0 and R so that
(
2p+1δK(p)

)
/p < ϵ/3,

and

(1− 2
p )2K(p)

δ2/(p−2)Rp
<

ϵ

3
,

and then choose ∆ > 0 sufficiently small for

U1

(
L4(R)K(p)

2
p + L2(R)m2

0

)
∆e6L

2(R)T(T+σ̄2C(2)+σ̄4T) <
ϵ

3
.

As a result, we obtain E
[
sup0≤t≤T |e(t)|2

]
< ϵ. The proof is complete. □

4. Convergence rate

In this section, we aim to establish the rate of convergence.

Lemma 4.1. Assume that there are positive constants L1, L2 and L3 such
that

|f(x)− f(y)| ≤ L1|x− y|, |g(x)− g(y)| ≤ L2|x− y|, |h(x)− h(y)| ≤ L3|x− y|

for all x, y ∈ Rn. Then, there exists a constant D > 0 such that

E
[

sup
0≤t≤T

|y(t)− x(t)|4
]
≤ DT∆2.

Proof. By the G-Itô’s formula, we have

(7)

|y(t)− x(t)|4 =

∫ t

0

4|y(s)− x(s)|2⟨y(s)− x(s), f(ȳ(s))− f(x(s))⟩ds

+

∫ t

0

[
4|y(s)− x(s)|2⟨y(s)− x(s), g(ȳ(s))− g(x(s))⟩

+ 2|y(s)− x(s)|2|h(ȳ(s))− h(x(s))|2

+ 4⟨y(s)− x(s), h(x̄(s))− h(x(s))⟩2
]
d⟨B⟩s

+

∫ t

0

4|y(s)− x(s)|2⟨y(s)− x(s), h(ȳ(s))− h(x(s))⟩dBs.
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Next, we consider (7) on the interval [0, t1). Using Lemma 2.3, we have for any
τ ∈ [0, t1)

(8)

E
[
sup

0≤t≤τ

∣∣∣∣∫ t

0

4|y(s)− x(s)|2⟨y(s)− x(s), h(ȳ(s))− h(x(s))⟩dBs

∣∣∣∣]

≤ 4C(1)σ̄E
[∣∣∣∣∫ τ

0

|y(s)− x(s)|4⟨y(s)− x(s), h(ȳ(s))− h(x(s))⟩2ds
∣∣∣∣] 1

2

≤ 1

2
E
[
sup

0≤t≤τ
|y(t)− x(t)|4

]
+ 8C2(1)σ̄2E

[∫ τ

0

⟨y(s)− x(s), h(ȳ(s))− h(x(s))⟩2ds
]

≤ 1

2
E
[
sup

0≤t≤τ
|y(t)− x(t)|4

]
+ 8C2(1)σ̄2L2

3E
[∫ τ

0

|y(s)− x(s)|2|ȳ(s)− x(s)|2ds
]

≤ 1

2
E
[
sup

0≤t≤τ
|y(t)− x(t)|4

]
+ 4C2(1)σ̄2L2

3E
[∫ τ

0

(|y(s)− x(s)|4 + |ȳ(s)− x(s)|4)ds
]

≤ 1

2
E
[
sup

0≤t≤τ
|y(t)− x(t)|4

]
+ 36C2(1)σ̄2L2

3E
[∫ τ

0

|y(s)− x(s)|4ds
]

+ 32C2(1)σ̄2L2
3E
[∫ τ

0

|ȳ(s)− x(s)|4ds
]
.

Similarly, using the global Lipschitz condition, the Hölder inequality and
Lemma 2.2, we get

(9)

4E
[
sup

0≤t≤τ

∫ t

0

∣∣|y(s)− x(s)|2⟨y(s)− x(s), f(ȳ(s))− f(x(s))⟩
∣∣ ds]

≤ 4E
∫ τ

0

|y(s)− x(s)|2 |y(s)− x(s)| |f(ȳ(s))− f(y(s))| ds

≤ 4L1E
∫ τ

0

|y(s)− x(s)|2 |y(s)− x(s)| |ȳ(s)− x(s)| ds

≤ 3L1E
∫ τ

0

|y(s)− x(s)|4ds+ L1E
∫ τ

0

|ȳ(s)− x(s)|4 ds

≤ 11L1E
∫ τ

0

|y(s)− x(s)|4ds+ 8L1E
∫ τ

0

|ȳ(s)− x(s)|4 ds
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and

(10)

E[ sup
0≤t≤τ

∫ t

0

(4|y(s)− x(s)|2⟨y(s)− x(s), g(ȳ(s))− g(x(s))⟩

+ 2|y(s)− x(s)|2|h(ȳ(s))− h(x(s))|2

+ 4⟨y(s)− x(s), h(ȳ(s))− h(x(s))⟩2)d⟨B⟩s]

≤ σ̄2E[
∫ τ

0

(4|y(s)− x(s)|2|y(s)− x(s)||g(ȳ(s))− g(x(s))|

+ 2|y(s)− x(s)|2|h(ȳ(s))− h(x(s))|2

+ 4⟨y(s)− x(s), h(ȳ(s))− h(x(s))⟩2)ds]

≤ σ̄2[3L2E
∫ τ

0

|y(s)− x(s)|4ds+ L2E
∫ τ

0

|ȳ(s)− x(s)|4ds

+ 6L2
3E
∫ τ

0

|y(s)− x(s)|2|ȳ(s)− x(s)|2ds]

≤ σ̄2[11L2E
∫ τ

0

|y(s)− x(s)|4ds+ 8L2E
∫ τ

0

|ȳ(s)− y(s)|4ds

+ 27L2
3E
∫ τ

0

|y(s)− x(s)|4ds+ 24L2
3E
∫ τ

0

|ȳ(s)− y(s)|4ds].

Substituting (8)-(10) into (7) yields

(11)

E[ sup
0≤t≤τ

|y(t)− x(t)|4]

≤ U2E
∫ τ

0

|y(s)− x(s)|4ds+ U3E
∫ τ

0

|ȳ(s)− y(s)|4ds,

where U2 := 22L1 + σ̄2(72C2(1) + 54)L2
2 + 22σ̄2L3, U3 := 16L1 + 16σ̄2L2 +

σ̄2(64C2(1) + 48)L2
3.

On the other hand, since the global Lipschitz condition implies the linear
growth condition

|f(x)| ∨ |g(x)| ∨ |h(x)| ≤ U4(1 + |x|)

with U4 := max{L1, L2, L3,m0}. Hence, for given stepsize 0 < ∆ < 1 and
t ∈ [0, t1), we have

|ȳ(t)− y(t)|4

=

∣∣∣∣∫ t

0

f(ȳ(s))ds+

∫ t

0

g(ȳ(s))d⟨B⟩s +
∫ t

0

h(ȳ(s))dBs

∣∣∣∣4
≤ 27

(
t3
∫ t

0

|f(ȳ(s))|4ds+
∣∣∣ ∫ t

0

g(ȳ(s))d⟨B⟩s
∣∣∣4 + ∣∣∣ ∫ t

0

h(ȳ(s))dBs

∣∣∣4) .
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Taking G-expectation and applying the Burkholder-Davis-Gundy inequality in
G-framework, we get

E|ȳ(t)− y(t)|4

≤ 27E
(
t3
∫ t

0

U4
8 (1 + |ȳ(s)|)4ds+ σ̄8t3

∫ t

0

U4
4 (1 + |ȳ(s)|)4ds

+C(4)σ̄4t

∫ t

0

U4
4 (1 + |ȳ(s)|)4ds

)
≤ 216E

(
t3
∫ t

0

U4
4 (1 + |ȳ(s)|4)ds+ σ̄8t3

∫ t

0

U4
4 (1 + |ȳ(s)|4)ds

+C(4)σ̄4t

∫ t

0

U4
4 (1 + |ȳ(s)|4)ds

)
≤ 216U4

4 (1 +K(4))(t4 + σ̄8t4 + C(4)σ̄4t2)

≤ 216U4
4 (1 +K(4))(1 + σ̄8 + C(4)σ̄4)∆2.

Substituting this into (11), by the Grownwall inequality, we obtain

E[ sup
0≤t≤τ

|y(t)− x(t)|4] ≤ DT∆2,

where D := 216U2U
4
4 (1 + K(4))(1 + σ̄8 + C(4)σ̄4)eU3T . Repeating the above

procedure on each interval [tk, tk+1), k ≥ 1, we get that

E[ sup
0≤t≤T

|y(t)− x(t)|4] ≤ DT∆2.(12)

Therefore, the proof is complete. □

Theorem 4.2. Let assumptions (A1) and (A2) hold. Suppose that there are
some positive constants a1, a2 and α3 such that L1(R)≤α1 logR, max{L2(R), L2

2(R)}
≤ α2 logR and max{L3(R), L2

3(R)} ≤ α3 logR. Then

E

[
sup

0≤t≤T
|y(t)− x(t)|2

]
= O(∆).

Proof. For each R ≥ 1, define the function

fR(x) =

{
f(x), if |x| ≤ R,

f(Rx/|x|), if |x| > R

and gR(x), hR(x) similarly. Let xR(t) be the solution to the following stochastic
differential equation

dxR(t) = fR (xR(t)) dt+ gR (xR(t)) d⟨B⟩t + hR (xR(t)) dBt
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with xR(0) = x0 and yR(t) be the corresponding EM solution with the stepsize
0 < ∆ < 1. Using (12), we obtain

E
[

sup
0≤t≤T

|yR(t)− xR(t)|4
]

≤ 216U2U
4
4 (1 +K(4))(1 + σ̄8 + C(4)σ̄4)

×
[
(64C2(1) + 48)σ̄2L2

3(R) + 16L1(R) + σ̄216L2(R)
]
T∆2

× exp
{
[72C2(1)σ̄2L2

2(R) + 22L1(R) + σ̄2(22L3(R) + 54L2
2(R))]T

}
≤ 216U2U

4
4 (1 +K(4))(1 + σ̄8 + C(4)σ̄4)T∆2

× exp
{
[38L1(R) + (54 + 72C2(1))σ̄2L2

2(R) + 16σ̄2L2(R)

+(48 + 64C2(1))σ̄2L2
3(R) + 22σ̄2L3(R)]T

}
≤ 216U2U

4
4 (1 +K(4))(1 + σ̄8 + C(4)σ̄4)T∆2RΓ,

where Γ := [38α1 + (70 + 72C2(1))σ̄2α2 + (70 + 64C2(1))σ̄2α3]T .
Set

ŷ(T ) = sup
0≤r≤T

|y(t)| and x̂(T ) = sup
0≤r≤T

|x(t)|.

Define the stopping time

τR = T ∧ inf {t ∈ [0, T ] : |xR(t)| ∨ |yR(t)| ≥ R} .
It is easy to show that

x(t) = xR(t) = xR+1(t) and y(t) = yR(t) = yR+1(t) if 0 ≤ t ≤ τR.

This implies that τR is non-decreasing and, by Lemma 3.1, limR→∞ τR = T
q.s. Let τ0 = 0, for t ∈ [0, T ), we have

|y(t)− x(t)|2 =

∞∑
R=1

|y(t)− x(t)|2I{τR−1≤t<τR}

=

∞∑
R=1

|yR(t)− xR(t)|2 I{τR−1≤t<tR)

≤
∞∑

R=1

|yR(t)− xR(t)|2 I(R−1≤ŷ(T )∨x̂(T )≤R).

Therefore

E
[

sup
0≤r≤T

|y(t)− x(t)|2
]

≤
∞∑

R=1

(
E |yR(t)− xR(t)|4

) 1
2 (EI{R−1≤ŷ(T )∨x̂(T )≤R}

) 1
2

≤
∞∑

R=1

(
E |yR(t)− xR(t)|4

) 1
2 √C(R− 1 ≤ ŷ(T ) ∨ x̂(T ) ≤ R).
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On the other hand, by the G-Markov inequality, for any q ≥ 2

C(ŷ(T ) ∨ x̂(T ) ≥ R− 1) ≤ E|ŷ(T ) + 1|q + E|x̂(T ) + 1|q

Rq

≤ 2q−1[E(1 + |ŷ(T )|q) + E(1 + |x̂(T )|q)]
Rq

≤ 2q[1 +K(q)]

Rq
,

where K(q) is defined in Lemma 3.1. Thus

(13)

E
[

sup
0≤t≤T

|y(t)− x(t)|2
]

≤
∞∑

R=1

√
216U2U4

4 (1 +K(4))(1 + σ̄8 + C(4)σ̄4)T∆RΓ [2
q(1 +K(q))]

1
2

Rq/2
.

Letting q be sufficiently large for q
2 > 1 + Γ, we see that the right-hand side

of (13) is convergent, we get the rate of convergence is 1/2. The proof is
complete. □
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