• 제목/요약/키워드: Euler-Lagrange equation

검색결과 88건 처리시간 0.021초

탄성지지부가물(彈性支持附加物) 또는 집중질량(集中質量)을 갖는 보강판(補剛板)의 진동해석(振動解析) (Vibration Analysis of Stiffened Plates having a Resiliently Mounted or Concentrated Mass)

  • 한성용;김극천
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.23-32
    • /
    • 1986
  • By virtue of an application of the receptance method, simplified formulae to calculate natural frequencies of stiffened plates having a resiliently mounted or concentrated mass are obtained. Some numerical results are compared with those based on Lagrange's equation of motion and with experimental results. For the problem formulation the stiffened plate is reduced to an equivalent orthotropic plate, a resiliently mounted mass to a spring-mass system, and mode shapes of the plate are assumed with comparison functions consisting of Euler beam functions. The proposed formulae give results in good conformity to both numerical results based on Lagrange's equation of motion and experimental results for in-phase modes of the coupled system. For out-of-phase modes the conformity is assured only in case that the natural frequency of the attached system is less than a half of that the stiffened plate. It is also found that a resiliently mounted mass having its own natural frequency of about two or more times that of the stiffened plate can be reduced to a concentrated mass with assurance of a few percent error in the frequency.

  • PDF

적외선 탐색 및 추적장비의 동적 특성 및 안정화 (Dynamic Characteristics and Stability of an Infrared Search and Track)

  • 최종호;박용찬;이주형;최영수
    • 한국군사과학기술학회지
    • /
    • 제11권2호
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향 (The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

이동질량을 가진 유체유동 회전 외팔 파이프의 동특성 (Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

크랙을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack)

  • 안태수;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 - (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics -)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로- (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change-)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.

종동력을 받는 크랙 외팔 보의 안정성 해석 (Stability Analysis of Cracked Cantilever Beam Subjected to Follower Force)

  • 안태수;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter insstability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향 (Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Static and dynamic stability of cracked multi-storey steel frames

  • Sabuncu, Mustafa;Ozturk, Hasan;Yashar, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.103-119
    • /
    • 2016
  • Multi-storey frame structures are frequently exposed to static and dynamic forces. Therefore analyses of static (buckling) and dynamic stability come into prominence for these structures. In this study, the effects of number of storey, static and dynamic load parameters, crack depth and crack location on the in-plane static and dynamic stability of cracked multi-storey frame structures subjected to periodic loading have been investigated numerically by using the Finite Element Method. A crack element based on the Euler beam theory is developed by using the principles of fracture mechanics. The equation of motion for the cracked multi-storey frame subjected to periodic loading is achieved by Lagrange's equation. The results obtained from the stability analysis are presented in three dimensional graphs and tables.