• 제목/요약/키워드: Euler-Lagrange equation

검색결과 88건 처리시간 0.023초

Euler-Lagrange 식을 사용한 확장형 완경사방정식 유도 (Derivation of Extended Mild-Slope Equation Using Euler-Lagrange Equation)

  • 이창훈;김규한
    • 대한토목학회논문집
    • /
    • 제29권5B호
    • /
    • pp.493-496
    • /
    • 2009
  • 본 연구에서 Euler-Lagrange 식을 사용하여 속도포텐셜로 표현되는 확장형 완경사방정식을 유도하였다. 먼저, Euler-Lagrange 식을 사용하여 흐름함수로 표현된 확장형 완경사방정식을 유도한 Kim과 Bai(2004)의 유도과정을 따라가면서 속도 표텐셜로 표현된 확장형 완경사방정식과의 관계를 찾았다. 속도포텐셜로 표현된 Euler-Lagrange 식을 찾아낸 다음 고차의 수심변화 항을 유도하였다. 본 연구에서 유도된 확장형 완경사방정식은 기존의 식인 Massel(1993)의 식과 Chamberlain과 Porter(1995)의 식과 정확히 일치하였다. 본 연구의 연구 성과는 확장형 완경사방정식의 유도 방법을 새로 제시하여 해안공학의 영역을 넓히는데 의의가 있다.

ORTHOGONAL STABILITY OF AN EULER-LAGRANGE-JENSEN (a, b)-CUBIC FUNCTIONAL EQUATION

  • Pasupathi, Narasimman;Rassias, John Michael;Lee, Jung Rye;Shim, Eun Hwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권2호
    • /
    • pp.189-199
    • /
    • 2022
  • In this paper, we introduce a new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation and obtain its general solution. Furthermore, we prove the Hyers-Ulam stability of the new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation in orthogonality normed spaces.

컴퓨터 비젼을 이용한 컨테이너 자세 측정 (The Container Pose Measurement Using Computer Vision)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.702-707
    • /
    • 2004
  • 본 논문은 CCD 카메라와 거리 센서를 사용하여 컨테이너의 자세 측정에 관하여 연구하였다. 특히 특징점을 추출하고 영상의 잡음을 줄이는 방법에 대하여 중점적으로 기술하였다. 가우시안 및 랜덤 노이즈를 제거하기 위하여 Euler-Lagrange 방정식을 소개하였으며 PDE(Partial Differential Equation)를 기초로 한 Euler-Lagrange 방정식을 풀기 위하여 ADI(Alternating Direction Implicit)방법을 적용하였다. 그리고 스프레더와 컨테이너의 특징점을 추출하기 위해서 기존의 황금 분할법과 이분 분할법을 이용한 방법은 지역적 최대 및 최소 값의 경우 정확한 해를 구할 수 없어서 k차 곡률 알고리즘을 이용하였다. 제안된 알고리즘은 영상의 전처리과정에서 잡음제거에 효과적이며 카메라와 거리센서를 이용한 제안 시스템은 기존시스템의 구조적 변경 없이 사용가능하기 때문에 비용이 저렴한 장점이 있다.

MULTI-JENSEN AND MULTI-EULER-LAGRANGE ADDITIVE MAPPINGS

  • Abasalt Bodaghi;Amir Sahami
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.673-692
    • /
    • 2024
  • In this work, an alternative fashion of the multi-Jensen is introduced. The structures of the multi-Jensen and the multi-Euler-Lagrange-Jensen mappings are described. In other words, the system of n equations defining each of the mentioned mappings is unified as a single equation. Furthermore, by applying a fixed point theorem, the Hyers-Ulam stability for the multi-Euler-Lagrange-Jensen mappings in the setting of Banach spaces is established. An appropriate counterexample is supplied to invalidate the results in the case of singularity for multiadditive mappings.

GENERALIZED STABILITY OF EULER-LAGRANGE TYPE QUADRATIC MAPPINGS

  • Jun, Kil-Woung;Oh, Jeong-Ha
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.535-542
    • /
    • 2007
  • In this paper, we investigate the generalized Hyers-Ulam{Rasssias stability of the following Euler-Lagrange type quadratic functional equation $$f(ax+by+cz)+f(ax+by-cz)+f(ax-by+cz)+f(ax-by-cz)=4a^2f(x)+4b^2f(y)+4c^2f(z)$$.

  • PDF

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.

APPROXIMATION OF ALMOST EULER-LAGRANGE QUADRATIC MAPPINGS BY QUADRATIC MAPPINGS

  • John Michael Rassias;Hark-Mahn Kim;Eunyoung Son
    • 충청수학회지
    • /
    • 제37권2호
    • /
    • pp.87-97
    • /
    • 2024
  • For any fixed integers k, l with kl(l - 1) ≠ 0, we establish the generalized Hyers-Ulam stability of an Euler-Lagrange quadratic functional equation f(kx + ly) + f(kx - ly) + 2(l - 1)[k2f(x) - lf(y)] = l[f(kx + y) + f(kx - y)] in normed spaces and in non-Archimedean spaces, respectively.