• Title/Summary/Keyword: Euler polynomials and numbers

Search Result 61, Processing Time 0.02 seconds

REFLECTION SYMMETRIES OF THE q-GENOCCHI POLYNOMIALS

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1277-1284
    • /
    • 2010
  • One purpose of this paper is to consider the reflection symmetries of the q-Genocchi polynomials $G^*_{n,q}(x)$. We also observe the structure of the roots of q-Genocchi polynomials, $G^*_{n,q}(x)$, using numerical investigation. By numerical experiments, we demonstrate a remarkably regular structure of the real roots of $G^*_{n,q}(x)$.

THE n-TH TWISTED CHANGHEE POLYNOMIALS AND NUMBERS

  • Rim, Seog-Hoon;Park, Jin-Woo;Pyo, Sung-Soo;Kwon, Jongkyum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.741-749
    • /
    • 2015
  • The Changhee polynomials and numbers are introduced in [6]. Some interesting identities and properties of those polynomials are derived from umbral calculus (see [6]). In this paper, we consider Witt-type formula for the n-th twisted Changhee numbers and polynomials and derive some new interesting identities and properties of those polynomials and numbers from the Witt-type formula which are related to special polynomials.

MORE EXPANSION FORMULAS FOR q, 𝜔-APOSTOL BERNOULLI AND EULER POLYNOMIALS

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.417-445
    • /
    • 2020
  • The purpose of this article is to continue the study of q, 𝜔-special functions in the spirit of Wolfgang Hahn from the previous papers by Annaby et al. and Varma et al., with emphasis on q, 𝜔-Apostol Bernoulli and Euler polynomials, Ward-𝜔 numbers and multiple q, 𝜔power sums. Like before, the q, 𝜔-module for the alphabet of q, 𝜔-real numbers plays a crucial role, as well as the q, 𝜔-rational numbers and the Ward-𝜔 numbers. There are many more formulas of this type, and the deep symmetric structure of these formulas is described in detail.

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

SYMMETRIC PROPERTIES OF CARLITZ'S TYPE (p, q)-GENOCCHI POLYNOMIALS

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.317-328
    • /
    • 2019
  • This paper defines Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, and explains fourteen properties which can be complemented by Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, including distribution relation, symmetric property, and property of complement. Also, it explores alternating powers sums by proving symmetric property related to Carlitz's type (p, q)-Genocchi polynomials.

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

대수체계의 발견에 관한 수학사적 고제

  • 한재영
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • It will be described the discovery of fundamental algebras such as complex numbers and the quaternions. Cardano(1539) was the first to introduce special types of complex numbers such as 5$\pm$$\sqrt{-15}$. Girald called the number a$\pm$$\sqrt{-b}$ solutions impossible. The term imaginary numbers was introduced by Descartes(1629) in “Discours la methode, La geometrie.” Euler knew the geometrical representation of complex numbers by points in a plane. Geometrical definitions of the addition and multiplication of complex numbers conceiving as directed line segments in a plane were given by Gauss in 1831. The expression “complex numbers” seems to be Gauss. Hamilton(1843) defined the complex numbers as paire of real numbers subject to conventional rules of addition and multiplication. Cauchy(1874) interpreted the complex numbers as residue classes of polynomials in R[x] modulo $x^2$+1. Sophus Lie(1880) introduced commutators [a, b] by the way expressing infinitesimal transformation as differential operations. In this paper, it will be studied general quaternion algebras to finding of algebraic structure in Algebras.

  • PDF